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A Query Driven Computer Vision System: A
Paradigm for Hierarchical Control Strategies During the Recognition

Process of Three-Dimensional Visually Perceived Objects

1. Introduction

In our proposal "Query Driven Computer Vision System: A Paradigm for

Hierarchical Control Strategies During the Recognition of Three-dimensional Visually

Perceived Objectso, written two years ago, we set out to build a system which is able to

interpret a natural language query and automatically generate a recognition strategy. .' Z

We listed as key features of the proposed system

1.. automatic generation of recognition strategies

2. natural language input and output

3. hardware implementation of hierarchical architecture for real time
processing, including real time stereo computation.

Since it was a proposal for four years, we shall first describe our accomplishments

during the last 18 months, and based on our experience and progress, outline what we

wish to do the next two years. This research is a part of a larger research effort

conducted in the GRASP (General Robotics and Active Sensory Perception) Laboratory,

which in turn is a part of the Center for Artificial Intelligence at the University of

Pennsylvania. The Center for Al is supported by two large five year grants: one coming

from NSF-CER (Computer Experimental Research), which goes from September 1983

through August "1988, and the other coming from the Army Research Office, which goes

from September 1984 through August 1089. The principal investigators on both of these

grants are Professor A.K. Joshi with R. Bajcsy as Co-PI, and a few other Computer

Science Professors making various contributions. All the equipment in the GRASP

laboratory, except for the IKONAS image display (which was purchased from this

Airforce Grant) has been purchased from these two large grants. Needless to say that

due to the Center for Al and its funding, the research proposed in this grant is well

backed in terms of facilities, (see also the section on Facilities) but we need the support

for people in order to carry out the work.

We emphasize the role of the active sensor in our research. By active sensor we

mean a cameras) which can move and serve as a probe rather than just a static recorder

of the scene. This should not be confused with active sensors like sonar, radar,

structured light, and laser range finders, which actually transmit a signal into the

I87 9 24 122
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environment and receive its echos. The human analogy for the active sensor paradigm is

a pilot in an airplane who can move his/her head and eyes in order to improve the

re.covery of the 3D information by combining stereo with motion, improving the visibility
of some details by control of zoom and focus, and their like. The activity is not in
transmitting signals, but in positioning the sensor and optimizing its parameters for the

signals being received.

The second area we emphasize is the Natural Language (,NL) query. This is the

reason why in this first phase we have concentrated more on the systems issues than on
the perfect solution to individual modules. We wanted to provide a pictorial system
(with depth map, surface descriptions, etc.) so that the Natural Language queries could

be executed. Due to the query the user is continuously interacting with the system and
the perceptual domain. The query represents the objects and their spatial relationships in
the scene which must be translated into those components that the perceptual module
can identify. This of course implies a study of modularity and specialization and yet

interaction between the purely perceptual entities, and the linguistic properties.

The last but not least component of this research is the aspect of real time
processing. Here we are interested in the analysis of established perceptual algorithms
that can be converted into parallel algorithms, and in the development of high

performance computer architecture for their implementation.

All this research though basic is also very experimental. Because of the complexity

of the scenes, sensing apparatus, and the processing strategies, we are testing the system
with both real life photos as well as on a scene mock-up, or modeL This latter capability

is provided by a controlled and verifiable experimental environment including

arrangements of known objects to form the investigated scene. For this purpose we use
two scale models: one of a general city scene (Figure 1) and another of the engineering

quadrangle of the University of Pennsylvania in Philadelphia (Figure 2). The latter is

scaled at 300:1 and the objects are quite detailed. The importance of the controlled scene
is that we can test the "goodness" (including accuracy and precision) of our vision

operators by making actual measurements of the objects and comparing them to the
scale model. Furthermore, we can use these scenes as a testbed for comparative studies
of our vision operators/algorithms with similar operators from other laboratories. The
basic research issues that we have been concerned with all along in this program are as

follows.
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FIgure 1-1: General City Scene

1.1. Computer Vision

1. On the low level image processing we are investipting the robustness and the
uncertainties of the low level visual operators, like the edge detectors, under
different illuminations, different orientation, focus and zoom of the cameras.

2. For the recovery of three-dimensional information we re interested in how to
combine redundant information and resolve conflicting data, such as what comes .
from stereo and optical flow. Ol

3. Rules for recognition strategies: Are there any principles? Can we separate the 000V

rules based on the knowledge about the camera parameters, the illumination and I
the semantics of the objects?

1.2. Natural Language

1. Since this is a query driven system, the user can employ NL words to specify the
spatial relations between the objects in the perceptual domain. One of the research
isues then is to develop a computational model which maps these linguistic terms . -

onto the perceptual model of the scene. This model must account for the meaning
of the words which are related by the locative construct (i.e. spatial construct). ........

2. Also due to the query the user is continuously interacting with the system and .
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Flgure 1-2: Engineering Quadrangle of the University of Pennsylvania
in Philadelphia

perceptual dom 'ain. We intend that there will-be some cooperative behaviour
between the system and the user. Here, however, we have extra degrees of
freedom stemming from the active sensors, and their probing of the environment,
that adds to the dynamics of this particular system. Thus one of the fundamental
goals of this research is development of a computational model that
accommodates this kind of interaction.

3. Last but not least, the development of NL interfaces to an active perceptual
module involves some key issues of knowledge representation, modularity, and
communication between the linguistic/conceptual and perceptual components of
the system.

1.3. Special Purpose Computer Architectures

1. We are investigating both hardware and software issues relating to the
implementation of ultra-high performance systems for the execution of low and
medium level image processing algorithms.

2. Em terms of hardware, the Image Processing Optical Network or IPON is being
developed as a high performance MIMD system based on a non-blocking optical
interconnection network. A basic attribute of PON will be the dynao.ically
partitionable and reconfigurable network based on optical-hybrid technolog for
key components to provide high bandwidth communications, high capacity

Iol fti eerhi eeomn f•cmuainlmdlta
acomdt thi kin of interation
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buffering, and certain types of high speed processing.

3. User level programming of IPON will be accomplished using the concept of process
level dataflow control via an interactive graphical image processing language. Of
fundamental importance here is the design of optimal strategies for the static and
dynamic allocation of resources (processors, memory, communications links) and
real-time scheduling.

1.4. Outline

In the subsequent chapters we shall describe in more detail our results for the last

year and a half and our plans for new research. It will be divided into three parts:

e the computer vision investigation,

* the natural language problem, and

* the special purpose architecture development.

2. Computer' V'ision

The computer vision section will be further subdivided into three sections:

* the low level image processing with active sensor

* the recovery of 3D information;

* and the surface reconstruction, representation and interpretation.

2.1. Low Level Image Procesaing with Active Sensors

Traditional approaches with static image use much low level image processing

which concentrates on filtering and edge detection. In the context of active sensing we

are seeking measurements from the current scene to feed back and control the various

parameters of the active camera: size of the lens aperture, positioning of the head,

orientation and the viewing angle, zooming in on the area of interest and converging on

some points of interest with the vergence control of the stereo camera.

We have investigated several edge detectors and filters in the domains of both time

and space. In particular, we have experimented with a non-directional edge detector

very much like the Laplacian of Gaussian function, a directional edge detector using the

Gabor filter, another directional edge detector approximating the first derivative of

intensity [Canny84"David84J and features of the intensity functions, such as the first and

second derivatives, very much like Haralick's Topographic Primal Sketch

[Haralick83;Crowleyl.
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It is very clear that different filters and features are suitable depending on the

scene, its illumination and the opening and closing of the camera aperture (iris). The

open issues are:

a) what is the feedback signal for the camera in terms of opening and closing
the aperture with respect to the optimal contrast.

b) How should differently scaled filters and their corresponding edges be
combined in order to obtain the "best boundaries" of objects. Here we define
contours as 2D outlines that are obtained from edges, and the label boundary
denotes the true 3D boundaries of objects.

For this we propose the following study: a laboratory set-up with a fixed scene, for
example a mock-up of a fictitious city (see Figure 1) with a 10-channel illumination setup

which can be precisely computer controlled. What one wishes to measure is a function

of the magnitude of an edge with respect to changes of two parameters: first, the

illumination of the scene, the size of the aperture; second, the scale (bandwidth, standard

deviation) [Witkins3;Terzopolous821 of the filter which is used before the edge detector is

applied.

We hope to prove or disprove two hypotheses: one that for every scene

(depending on the material of objects in the scene) and the illumination there is an

optimal degree of opening of the camera's aperture; the other is that the scale on which
the edge is detected the obestg is proportional to the size of the object and to the detail

that the observer is interested in.

Other low level image processing consists of linear and non-linear filtering (see

Appendix 2).

2.2. Recovery of the 3D data
In this section we wish to study how to recover the 3D information from a stereo

pair of images, a series of images taken in time, and controlling the vergence angle

between a stereo pair of cameras.

2.2.1. Stereo

The problem of stereo is traditionally divided into two parts: the correspondence

problem (which is the difficult one), and computing the true (in some absolute coordinate

system) deoth value. We assume that the camera calibration problem has been solved,

including the problem of scan line registration [IzagurreSSj. First we shall deal with the



problem of correspondence and matching. The computation of the true depth value will

be treated when we discuss the use of the vergence angle.

The itre-c matching problem: During the last year or so we have
experimented with a combined edge-region matcher (Appendix 1). Although the results
were encouraging, we wished to understand the inherent limitations of a stereo matcher

of static scenes. Hence, we embarked on the following problem: Given two 2-D
projected views of a 3-D scene which differ by an arbitrary but known transformation,
one needs to find unique matching between corresponding points. We assume that the

input data for both images is a series of edge maps recovered through different filters

and/or features.

There are two possible errors:

1. features in each image that should be matched but are not-the true negatives;
2. the features in each image that should not be matched but are matched-the ralse

positives.

Furthermore, from the total number of features not all have a match, due to
partial occlusions. So the total number of matchable features is less than the total

number of features in either image.

What are the parameters or features upon which matching may occur?

1. edge points
2. edge segments
3. two edges and their relationship (corners, intersection,..)
4. more then two edges
S. enclosed contours.

In other words, the feature vector can be ordered with respect to the number of
components.

The selection of the particular feature from the above list (and there could be
more) depends on two criteria:

* Uniqueness, i.e., we wish to have such a feature that uniquely rinds its
corresponding match; and

* Robustness, i.e., we need such a feature which will not be sensitive to the
camera transformation.

From the uniqueness condition it would appear that the feature should be as rich

as possible (ideally the whole object). On the other hand, from the robustness condition

J q~
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would follow the requirement for as small feature as possible. Our task is to find the

optimum compromise between the two extreme criteria.

Adapting the methodology from the optimal control theory [Bi-yson, Ho8O] we can

translate our problem as follows:

our decision parameters are: the number of feature points (denoted u's)

the state parameters are: the complexity of features translated into
the length of the feature vector, (denoted x's)

the constraint relations are two: robustness and uniqueness related to each
other by their reciprocity or complementarity.

Actually, the uniqueness function is equivalent to the complexity of features.

Hence the constraint relation can be'reduced to one linear function
f(x,u) = x + mu - c - 0,

where m, c are constants.

The performance index, which is a scalar function of both decision and the state

parameters, is in our case the error of matching. In many physical systems and/or

problems the performance index function can be derived as an analytic function.

However, in our case this function has to be derived only empirically because it depends

on the complexity of the scene, which is impossible to model in its full generality. The

best we can say is that we hope that the function will be nonlinear with the existence of

minima so that one can derive an optimal control strategy. For obtaining the error

function we propose the following procedure:

1. We shall analyze several stereo pairs from different domains. Using first just
the edge maps, we shall perform matching and compute the total of error of
false positives and true negatives, normalized with respect to all the points
that should have been matched.

2. We display these values against the total number of edge points.

3. We compute larger features and perform matches on them and display the
error as defined in 1. against the total number of features.

4. We repeat this process on larger and larger features.

5. From the obtained data we shall fit a function error (x,u) and then compute
the minimum value satisfying the constraint f(x,u)=O.

8. From the minimum we should obtain the optimal feature length a for a given
scene. This feedback signal also can be used for control if the pan/tilt of a
slightly different view of the scene is required.

A x
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2.2.2. Optical Flow

The problem: Given a series of images and a particular feature in time, the

problem is to compute the vector (its magnitute and direction) of the feature spatially

displaced over time. The problem is similar to stereo computation in that the issue is to

rind the proper features upon which one can match and then solve the correspondence

problem. The problem is different from the stereo in that while in stereo there is an

angular disparity, in the time sequence when sampling rate is high the positional

disparity between the consecutive images is purely translational.

For the computing of optical flow we have investigated the following features:
No features-the Horn and Sehunk method; (Horn8$]
Motion energy-Adelson's method [Adelson84J
Burt's correlation method [Heeg].

The advantage of the first two methods is that there is no need for solving the

correspondence problem. However, the price for that is high! In Horn and Schunk's

method the smoothness constraint is a terribly limiting factor. In Adelson's method we

are getting only the motion energy and the movement direction left and right, no other.

This method uses filters sensitive to space/time oriented intensity changes This work is

in progress and it still remains to be seen whether we will be able to use this method for

recovery of 3D from motion parallax.

2,2.3. Focus

Three-dimensional data can also be recovered from a scene using 8depth from

focus'. We are building hardware to automatically control focus. We are developing

four different techniques for measuring focus sharpness, including (in increasing

computational complexity) scan-line sum-modulus-difference of intensity, grey-level

population entropy, grey-level variance, and power spectrum energy distribution analysis

(via radial histogramming).

These techniques will be implemented and compared with respect to their

effectiveness in improving focus to the extent that one point in the visual field can be

said to be in focus, and from the position of that point on the image plane, the camera

focal length, and the diameter of the aperture, we can precisely and uniquely determine

the range of that point.

er %We:- r %% r
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2.2.4. Vergence Angle

The last method in the recovery of 3D information is the use of vergence angle.

This is a direct way of reading out the distance once the correspondence of the point has

been established. The method is essentially triangulation. We are building hardware to

both control and measure the vergence angle between two cameras. With this angle, the

exact distance to any point fixated in both visual fields can be discovered. Given this

exact distance, the relative depth maps returned from stereo and optical flow can now be

fixed as absolute depth maps. See Appendix I (eFrom Disparity to Depths) for details

of how absolute depth maps are generated in the present implementation.

We propose to use this device (designed and under construction) for accurate and

unique absolute distance mapping of the visible surfaces and the stereo and the optical

flow for filling in the gaps, which return relative distances.

2.3. Surface Reconstruction and Representation

From the previous section it should be clear that no matter how hard we shall

work on various algorithms to obtain as perfect as possible 3D data, there is an inherent

limit, due to well known physical limitations (occlusion, illumination, focus, zoom,

orientation and the visible aspect of the object, to name a few) to the completeness with

which 3D information can be recovered. So the next problem is how to supplement the

missing data. The obvious answer is that some kind of interpolation method needs to be

applied.

2.3.1. Depth Point Interpolation - Filling In the Gaps

The research issue for any scheme of filling the gaps is the trade-off between the

measurements and the a priori information. We elaborate on this trade-off with an

example. Let us suppose that we have a sparse array of 3D points after a stereo and/or

optical flow computation. Remember we are left with some points that have not been

matched either in the stereo matching nor in optical flow computation. In order to fill in

the gaps we have several possibilities:

a) we can ignore the unmatched points, Le., have confidence only in those points
(measurements) that have been matched. Then assume, let us say, a linear (or
any polynomial) model (the a priori information about the local surface).
Based on this we perform linear (or polynomial) interpolation between the
neighboring points.

b) An alternative to the case a) is instead of assuming the linear or polynomial
models, which are inherently local, neighborhood models, assume a global
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smoothness constraint, which, using variational calculus, tries to fit the
smallest and smoothest surface over the sparse data. [Grimson8l.

c) The third possibility is to assume a local smoothness constraint in the depth
values. Then reexamine the unmatched points (match them with the closest
edgels in the other image) and check whether their depth value would satisfy
the smoothness constraint with the neighboring points.

d) Finally, if, for example, from the outline we can identify measured objects,
then clearly the gfill in gapsm process can use this information. An example
of this case can be sidewalks or roads in aerial views.

As usual in machine perception, there is no one technique that works uniformly
well in all cases. We believe that this is an integral part of the surface interpretation.

One clearly needs all the above techniques available and then having a rule-based system
use whichever give the "best" results. For example if we have one object in the view,
then perhaps the third method is the "beste. If one his reason to assume that one deals

with objects that have only planar surfaces, then the first method might be adequate.
The third method is the most versatile since it uses the most measurements and the least
a priori information. The cost is in computation. We have implemented all of these,
and some partial results are shown in tSmitley841 (Appendix i.).

2.3.2. Reconstructing and Representing Surfaces
Having a rich set of depth points available, the next problem is how to find closed

boundaries, and from them, surfaces.

Finding boundaries of objects versus their surfaces are two complementary
mechanisms which work simultaneously in a cooperative fashion. For the problem of
boundaries there are two problems that we wish to differentiate: one is to ind the
boundary of an object in a complex scene. that is to singulate (or segment) an object; the
other is to identify boundaries amonc surfaces in the same object. In the first case the
problem is of a decomposition of the 3D visible space into individual objects, for
example, by rinding the smallest enclosing convex polyhedron. In the second case we are
concerned with rmding enclosed curves or connected segments of lines that enclose a
continuous surface.

While the problem of singulation of an object is the Ph.D. thesis of E. Krotkov (see

his proposal), in this paper we shall report on the program for rinding boundary lines,
also called wire frames. Naturally, we assume that all visible boundaries are true
physical boundaries. The process starts with looking for points of high curvature and

k. 5 * 5 - ** / * ., * *'p., ~ . 4 ~ 2
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corners. From these points, a divide-and-conquer method of recursive decomposition

finds that line which has the lowest curvature and shortest path. Another method for
finding contours which instead of divide and conquer first generates all possible contours

and then uses graph search for finding the Obest* contour in terms of some cost function
was investigated by Heeger [Heeger84J. This work, though interesting as a plausible
computational model for the psychophysical phenomenon of subjective contours, is

inefficient for practical implementation with current sequential hardware. For the future
we need to improve our corner finder! (See Appendix I for a discussion of how edge

detection may also directly identify "edgels" as corner features). After obtaining lines in

between the corners and/or high curvature points we still need to know which of these
contours are closed. The process that performs this task also creates a graph (a linked
list of vertices, edges, and faces) which serves as the basic data structure for further,

higher-level processing.

All the above procedures get leverage by virtue of the fact that our objects are
polyhedral. What remains an open research question is how to proceed when the

surfaces within boundaries are not planar. One method we shall investigate is converting
the set of 3D points into two images. one representing the surface normals and the other
the range information. Then by applying region growing and/or edge detection

techniques one should be able to discriminate between planar and curved surfaces

Dane82I. The curvature of curved surfaces can be represented using splines [Allen841.

Returning to our simplified world, once we have the planar faces, then we can

compute the surface attributes and relations. Here we are benefitting from the work of

our colleague Professor Badler and his students at the University of Pennsylvania, who
have developed a geometrical modeling system SurfsUP [Radack84l. In it, a face is
defined by its enclosing 3D contours. Attribute values for each face in the surface graph
are computed [Krotkov84: compactness, centroid vector, (outward-pointing) normal
vector, area, "type" (building, sidewalk, field, street, and unknown), and number of

sides. These values are computed once and stored on an attribute list. Furthermore,
topological relations such as above, adjacent (touching), contiguous (sharing an edge),

contains (proper inclusion), looksadjacent, lookscontiguous (respectively adjacent and
contiguous under perspective transformations). Relations (and indirectly their

complements) are computed once and stored as Boolean arrays. Results of this stage are
fed to the object interpreter.
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3. The Natural Language Issues

One of our major tasks is the development of a natural language (NL) query

system interface to a visual (perceptual) system. The reason for using NL is not because

we want to construct a cute interface, but rather because the use of NL provides

Oflexibilityo to the user. There are many aspects of eflexibilityo that make such faces

attractive for conventional databases or knowledge bases, and, of course, these will carry

over to the perceptual domain also. However, the particular aspects of eflexibilitys that

are directly relevant to our domain are as follows.

The user can employ NL terms (words) to specify the spatial relations (and later

actions in the robotics domain) in the perceptual domain. It is in these terms the user

can best characterize the domain. The system then has the responsibility to map

successfully these terms on to the terms (or composites of them) to the perceptual

module of the system.

The semantics of spatial relational words (eg. spatial prepositions) is extremely

complex. Determining the proper interpretation of a spatial preposition is not merely a

matter of matching a preposition with a single representation. The interpretation of

spatial constructs depends heavily on the entities which are related by that construct

[Herskovits84] [Talrny83], For this reason, the system will have available to it the

linguistic properties of the objects which may appear in the domain as well as a set of

interpretations for the location of constructs based upon the semantic values of the

entities it relates. The linguistic properties are those features which affect the usage and

interpretation of a spatial construct (phrases describing the spatial relations between

objects). Since the domain is a visual one, each object in the domain will have a "place"

associated with it. This is what Herskovits calls the canonical geometric description of a

spatial entity (objects) [Herskovits84l. Ordinary solid objects (buildings, vehicles, people)

are bounded closed surfaces. Geographical objects are entities with slightly imprecise

boundaries - roads, rivers, and fields. Some other properties which must be represented

are a prototype shape and the allowable deviations from it, the relative size, and

characteristic orientation - i.e. a table stands on its legs normally. The typical geometric

conceptualization will also affect the choice of spatial construct - is the object normally

viewed as a point or line. Along with the typical geometric conceptualization is the

typical physical context of an object. For instance, a door is normally viewed as begin in

a wall. The normal function of an object, its relative size, it functionally silent parts and

the actions commonly performed with an object will also be necessary for analyzing the

* * . N * . * . Np . ~ . . ,
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spatial constructs.

For example, proper use of the preposition [N as in A is EN B involves not only
computing containment (or partial containment) of A in B, but also assuring that B is in
its normai orientation. Thus. in asking GIs the coin in the cup?' the user is assuming

that the cup is in its normal orientation. If that is not the case and, say, the cup is
upside down and the coin is under it, a response by the system "Yes" would be

misleading, as it will tend to confirm the user's false presumption that the cup is in its

normal orientation. An appropriate response is at least ONo', but preferably (more
cooperatively), "No, it is under the cup, the cup is upside down'. Thus the system has

to be sensitive to the normal orientation of objects in order to fully capture the

semantics of IN.

The kind of cooperative behavior described above has been studied extensively in
the context of NL interfaces to conventional databases or knowledgebases. Much of this
theory and technology for these domains can be successfully carries over to the
perceptual domain. However, NL spatial terms have not been systematically studied

from the point of view of developing interfaces for perceptual domains. A rather
preliminary study appears in [HerskovitzS2j. However, this study is incomplete in may
ways, especially in terms of the development of a computational model without which it

is of no great value to our proposed task. Thus, one of our fundamental goals is the
development of an appropriate computational model for the kind of interactional we
want to support.

The second aspect of eflexibility' we call the query driven system. Given the
number of relevant spatial relations between objects in a perceptual domain, it is
impossible to precompute all the necessary relations. Our approach is 'query driven' in
the sense that, as a result of a query being asked, the system will compute the needed

information from perceptual database as necessary. This dynamic behavior is not

limited to just making some additional computations on already collected date, but will
also involve acquiring new data, for example, by taking an additional view from a
different angle (or getting new information from another modality), etc. The user is not
constrained by what information has been collected already and what predicates have

been precomputed. His queries will determine what information is needed to properly

answer the query, and if that information is not available, then it will so inform the
perceptual module. The perceptual module can then determine whether this new

:. '. , .,.-.'. '.j ,... .. ."-."-."..".."."." .°-' . ' . " '. "._-"'-''.''.'° " ". '. - . ." " - . .-L."."."...-':-" -".'.-.-"-". -
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information can be computed from the data already gathered or whether it will require

to get new data. Such behavior is initiated by the failure of the query at some level of

interpretation. Such an opportunity is rarely available in the conventional databases,

and even when it is available, it is of a very limited kind, as in the case of updatable

databases.

If the reasoning processes fail to produce a positive response (the query fails to

have an answer although it is syntactically correct), two types of query failure analysis

are performed. The first type of query failure involves a query violating the global

knowledge known about the domain. In this case, the system will respond with a

message indicating that the query is conceptually ill-formed in this domain and why it is

ill-formed. For instance, if the query asked how many walls the street had. the system

would respond that streets do not have walls and that for that reason, the query is ill-

formed. The other type of failure involves not fimding the information requested in the

scene model. In this case, rather than simply responding that the system was unable to

find the data in question, of the scene with the old one in order to obtain a positive

response to the query.

Thus the development of interfaces to an active perceptual module involves some

key theoretical issues of knowledge representation, modularity, and communication

* between the linguistic/conceptual and perceptual components of the system.

3.1. The hypothesis generation and object recognition
The goal of the LandScan system is to perform query driven analysis for urban

scenes. This places two constraints on the object recognition process: it must have top-

down control structure, frmding only those objects referenced in the query, and must

encode global knowledge about a domain in which objects of the same type may have

very different appearances. We have considered several different schemes for the

representation of the global knowledge necessary to perform object recogniation such as

frame based [HwangS3, Glicksman83j, production systems, [Posenthalll and their like.
We have finally settled for Augmented Transition Network (ATN) formalism because it

enables the global knowledge to be encoded as a generative model for constructing

objects from the primitives in the scene while driving the recognition in a top-down

fashion [zwaricog4l.

The ATN formalism [Bates8l], [Winogrsd831 was chosen to perform object
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recognition. Despite earlier failures using syntactic object recognition [fu82 we have

found that a higher level syntactic approach works well in the urban environment. It

appears that there are "rules" to describe the recognition of objects in the urban, aerial

domain. These objects appear to be composed of planes in fairly regular fashion even

though their appearances may be quite different. For example, while two buildings may

appear quite different, the relations between the planes which comprise each may be the

same. Earlier attempts at object recognition using a syntactic approach failed because

the primitives which were combined were too low level (edges, etc), the matching

sequences were too strict, and the domains were not appropriate for a syntactic

approach. In LandScan, the primitives used are higher level (surfaces) and thus have

more information associated with them. Unlike other syntactic pattern matching
systems, the grammar rules in LandScan do not specify a strict matching sequence.

Instead they specify the properties which must hold between the simpler components of

an object. Since the rules are more general there are fewer in the system thus

simplifying the recognition process. The grammar enables the global knowledge about

object appearances to be encoded as a generative model for objects of indefinite

* appearances. This also differs from the Tropt and Walters ATN for 3-D object

recognition [Tropf83 first generates an hypothesis and then uses the ATN to verify the

hypothesis is correct. The ATN operates using a top-down control structure - enabling

the object recognition to be a query-driven process. In LandScan the control structure

used in recognition has been separated from the global knowledge used in the recognition

process. Thus finding additional object types only involves adding syntactic rules for

recognizing these objects. It also implies that the control strategy used can be changed

as long as it can still use the grammar rules.

The Augmented Transition Network (ATN) is composed of three parts: the

grammar, a dictionary, and an interpreter. The grammar represents the a priori or
world knowledge that the system must have in order to recognize objects and assign

•cultural" labels to subset of the scene. The dictionary presents the actual data which

will be used in the recognition process- the surface model described above. The third

component of the recognizer is the Lisp program which provides the control structure for
the proes. An object is recognized by traversing a network successfully.

The grammar as written is a two level network (this is considerably simpler than

most ATN's which handle natural language utterances.) The bottom level concerns itself

with the recognition of "simple objects." An object is simple if its further decomposition
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into parts will result in no entity which is in the domain of objects. For example,

decomposing a building with a pitched roof will result in two halves of a pitched roof.

Neither of these entities are considered objects in the domain - they are parts of objects.

This level consists of the networks SIMPBUILD, SIMPSTREET, SIMPFIELD, and

SIMPSIDEWALK. The top level combines the simple objects which were recognized in the

firt level of the network into "complex objectsm. A complex object is decomposable in a

nontrivial way into at least one simple object. Each grammar rule represents the

components and relations which must hold between those components in order to be
considered ina object or "sub-objecte. The components are specified by the arc typ~e -

either an object primitive (surface) or a simpler instance of the object. The tests
associated with the arcs encode the relations which must hold between the components

as well as providing further checking for component features.

As objects are recognized, a dynamic model of the scene is incrementally built by
adding more information to it as further image analysis occurs. The scene model in 3-D

MOSAIC [Herman3 is also incrementally derived as more data becomes available but

the modelling process is data driven. LandScan builds a model using a query driven
control. In other words, the modeller obtains more data as the user directs the vision

system to analyze other areas of the scene which are of interest to him/her. Thus the

Scene Model reflects the user's interest in the scene. The LandScan dynamic scene
model is especially useful because it is flexible. the accuracy of the scene model increse

as new data is acquired. Thus old hypotheses can be discovered false, deleted, and the

scene model updated to reflect the more accurate understanding of the scene. In
LandScan, when the scene analysis of a now image begfin the scene model is empty. As

questions are asked, the scene analyzer/constructor searches for the entities whose

existence is in question using the object recognizer described above. As soon as the
objects queried are found they are added to the Scene Model. Thus the Scene Model

also reflects the history of the user's interest in the image. The dynamic scene model is
composed of two components: a list of objects currently known to be in the scene ad a

set of matrices representing the p primitive relations hold between the objects on the

object list. This design facilitates updating the scene model. To update the model the
new object is simply added to the object list and the primitive relation matrices are

expanded to include the relationship of the new object to alH other objects in the model

The first component of the scene model is the object list. The elements on this list

[re those objects which have been recognized during previous scene analysis operations.
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These objects are represented only by polyhedral surfaces, conceptually the most

primitive component of an object. Thus to the high level reasoner it appears that

objects are composed of only bounded planes - primitives at one level of representation.

The use of a single primitive at one level of representation. The use of a single primitive

(or a set of primitives which are not composed from one another) is conceptually clean to
work with and is adequate for modelling objects in this domain. Each instance of an

object in the scene has the information associated with it which was determined

ncessary to facilitate further scene analysis. The components of an object record are a

name, the list of faces (polyhedral surfaces) comprising the object, its location in

Euclidean three space(average of the centroids of all the faces comprising the object),

and a subtype which gives more specific information about the expectations one can have

about the object.

The relations in the scene model represent the primitive relations or topological

properties between objects in the scene. The relations are ADJACENT, CONTIGUOUS,

LOOKSADJACINT, LOOKSCONTIGUOUS, ABOVE, and CONTAINS. They are defined over

the set of all objects currently recognized in the scene. These relations are defined

similarly to their counterparts in the Surface Model. The relations are represented by

their adjacency matrices because the adjacency matrix is easily updated and makes

composition of relations simple. The composition becomes a simple matter of boolean

matrix multiplication for which there are many fast and efflicient algorithms.

The combined use of the Scene Model and the object recognizer facilitates the

following scene analysis operations: determining the relations, both complex and simple,

among objects; locating and identifying specific objects and object parts. The existence

of objects will be resolved in one of two ways - finding the object in the scene model by

searching the object list, or using the recognizer to find a new instance of the object. To

find an object part its face list will be searching until the part is found using the global

knowledge about parts embodied in the object modeL As for resolving the interpretation

of locative constructs, the relations alow objects to be located relative to other objects in

the scene using the matrix operations specified by the sematics of the spatial constructs.

Suppose the question were asked, *Is there a car on the street?" An object of type CAR is

ON an object of type STREET if the following primitive relations hold:
CONTAINS(STREET,CAR)
ABOVE(CAR,STREET)

The reasoner would determine it the CAR is ON the STREET by calculating the
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following relation composition:
CONTAINS * AVOE T

which would be calculated by a simple matrix multiplication of the CONTAINS
adjacency matrix and the transpose of the ABOVE adjacency matrix. So the

understanding of relational expressions will be accomplished by composing the primitive

relations.
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4. IPON - Advanced Architectural Framework for Image Processing

This section outlines the organization and implementation of IPON in terms of

both the hardware and programming environment, the progress to date, and our future

plans for this research effort. Additional details can be found in [Gold84] and [SmitS41.

4.1. Introduction
One fundamental computational problem with image processing is the time needed

to execute typical algorithms. This is especially severe with the types of image

processing required for interactive image understanding applications. These algorithms

deal with extraordinarily large quantities of data. A typical two dimensional image (512
x 512) consists of approximately a quarter megabyte of data. Voxel (3D) and time

sequenced images consist of much greater amounts of data. Even the most powerful

contemporary processors become ineffective when presented with such quantities of data.

Many related applications such as a mobile robot trying to avoid obstacles as it moves

require real-time processing capability (one image every thirtieth of a second). The use
of ACTIVE SENSORs further increases this computational load since processing may

need to be performed quickly at several different levels of detail or on :;lightly different

data.

The objective of the IPON (Image Processing Optical Network) project is to

investigate possible solutions to these problems. An architectural framework is evolving
from this effort which is usable on current computation systems and will be directly

applicable to emerging advanced technology as it becomes available in the future.

The realization of real time image processing has long been a goal of many

researchers in computer architecture. Towards this end many different architectures

have been developed. The applicability of MIMD, SIMD, pipelined and data flow
processors have been investigated [Etch83 and each found to have the following types of

problems:

1. Lack of flexibility (Pipelined and SIMD processors).

2. Complex awkward programming (MIMD).

3. Implementation Difriculties (MIMD and Data Flow).

4. Limited areas of efficient application (SIMD, Systolic rray).

Image processing represents one of a class of computation applications which



requires the manipulation of extremely large datasets. Traditional computer architecture

including Von Neumann (SISD) machines as well as pipeline or systolic arrays, SIMD,

and MIMD networks falls far short of the performance required for the real-time needs of

machine perception, image analysis, certain types of image related computer graphics,

object tracking, etc. Inherent in these approaches are bottlenecks associated with

network communications and data storage.

4.2. Overview of IPON

The Image Processing Optical Network represents an architectural framework

consisting of two major parts: the PON hardware configuration and optical

interconnection network and the integrated IPON software environment.

IPON is a computer system built around an optical interconnection network.

Optical interconnection networks such as the one which we are designing provide

solutions to many of the problems associated with the use of traditional electronic

networks. Communicating through this network are a number (< 1000) of

heterogeneous processors which need not be 'silicon' based.

The LPON programming environment facilitates the development and debugging of

parallel image processing algorithms. The hardware and the software of IPON have

been designed in such a way that programs written using the IPON program

development system can be efficiently executed on the IPON hardware as well as on

other multiprocessors or conventional superminicomputers.

It was essential to develop a system that is easy to program and debug while still

providing parallel execution for increased throughput. The IPON hardware

configuration represents a machine on which actual image processing algorithms will be

implemented and used by vision and robotics researchers. Towards this end, IPON

embodies the following, which make it a powerful system for developing real time image

processing algorithms. IPON is a system of hardware built around an optical network

which is:

1. Completely connected
2. Non-blocking
3. High speed
4. Dynamically reconfigurable
5. Expandable at a linear cost
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These characteristics:

" Allow for maximum utilization of any number of ultra-high performance
heterogeneous processors which can be easily integrated into the IPON
system.

" Reduce the concern over the time taken to transmit data from one processor
to another. This can reduce the difficulty of task scheduling since the
transmission of data is not as costly as it is in traditional MIv[D systems.

" Allow for the use of distributed control flow as opposed to a centralized token
matcher or task dispatcher.

* Make UPON expandable. The network complexity increases linearly with the
number of processors, not at the rate of n-squared. Algorithms written for a
given machine configuration do not need to be rewritten when the machine is
expanded.

IPON's programming environment is based on process level data flow
which:

* Gives rise to m-duLar programs which can be used a$ building blocks ror
more advanced algorithms.

* Reduces any possible communication bottleneck due to the fact that data is
only transmitted at the completion of a process as opposed to the completion
of an instruction.

" Allows one to exploit inherent parallelism amongst processes.

" The data flow execution paradigm is enforced only upon the processes
themselves. Internally, the process can use any other appropriate flow of
control paradigm to efficiently execute the algorithm.

* UPON is programmed in a graphical, hierarchical programming language
which eases the development problem associated with parallel algorithms.

The optical network, which allows any processor to communicate with any other

processor and allows any number of such conversations to take place simultaneously, is
diagrammed in (Figure 3). The network consists of n optical transmitters (laser diodes),

n acousto-optic deflectors (AOD, Bragg cells) and n photo sensitive receivers

(photodiodes). Each processor is attached to one or more transmitters and receivers.

The AOD devices serve as beam steerers; they deflect an incoming laser beam at an

angle proportional to the frequency applied to the device. For applications where high

speed dynamic reconfigurability is not required, low cost mirror based deflection systems

based on galvonometers, servomotors, or piezoelectric devices can be used. Connected to

this network are a number of homogeneous processors. These processors need not be

typical digital processors; indeed one of the motivations behind the development of

V............................... ... ......
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Figure 4-1: Optical Network

IPON was to allow integration of non-traditional image processing devices into a more

traditional (in terms of programming and use) image processing-system. The reason or

this is the fact that digital computers are not always the ideal devices for doing image

processing. Alternative image processing devices include coherent and non-coherent

optical devices [StarS2I that enable the computation of complex functions such as the

Fourier transform to proceed at the speed of light. Hybrid analog-digital systems

[Dood79j have also been developed that perform many image processing functions

which, if performed using purely digital techniques, would require orders of magnitude

more hardware to produce the same result in the same amount of time. More traditional

machines capable of increased throughput, such as SIMD computers, can also be

integrated into the IPON system. While many of these approaches are at the present

time extremely primitive, the important point is that they can be easily integrated into

IPON as the technology matures.

IPON programs will be written in a graphical data flow language. The language is

also hierarchical, allowing the programmer to view a program at any level of detail he

desires. We are choosing to use a graphical language in the hopes that a graphical
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representation of an algorithm consisting of a number of cooperating parallel processes

will be easier to understand, hence easier to construct and debug. It is interesting to

note that in most texts describing parallel systems, the system is first represented

graphically and then it is shown how to convert this graph to a one dimensional

representation, i.e., a program written in a language that supports parallel flow of

control operators such as fork and join [Denn76]. While this program retains the same

semantics of the original graph, it is no longer as easy to visualize just what function it

performs. We feel that it is this linearizing of parallel programs, which makes writing

and understanding such programs the difficult task that it is today. IPON attempts to

reduce this difficulty.

4.3. Current Status of IPON

Substantial progress has been made in the time (approximately one year) since the

[PON project was initiated. Some of the accomplishments of the first phases of the IPON

effort are listed below:

o Architectural design of IPON.

* Functional emulation of IPON structure.

o Preliminary graphical programming interface.

* Initial investigation of optical network implementation.

* Determination of requirements for distributed control.

* Organization of optical data link interface processor.

Note that most of these areas of research are quite general in nature. Thus,
although our immediate objectives relate to IPON, the results obtained with these

investigations will be applicable to other multiprocessor and dataflow systems - especially

in the areas of optimal resource allocation and scheduling on MIMD and dataflow

systems.

We are now in a position to investigate the following aspects of IPON:

* Implementation of prototype optical network.

e Optimal network control and task allocation.

. Use of shared high capacity storage.

* Performance evaluation and optimization.

a..



27

* Graphical programming system development.

e Hierarchical image database management.

* Integration of special purpose or hybrid processors into EPON.

To date the majority of work has been concentrated in the development of an

IPON system emulator. Towards this end a program to construct graphical programs,

compile them into an intermediate language and subsequently compile this language has

been developed. Furthermore, a primitive version of the task allocator and an

interpreter to execute the generated code have also been developed. With these tools, we

have developed image processing algorithms in the graphical language and executed

them under the [PON emulator on a single processor VAX. However, the emulator

currently only supports algorithms which require no iteration or selection and assumes

that there exist enough processors to perform all the tasks simultaneously.

Current work is centered around the development and analysis of the optical

network. We are constructing a small prototype of the hardware and plan to evaluate

the resultant network in terms of speed, reliability, and cost. Furthermore, we are

developing the necessary control algorithms through which the processors will interface

to the network. After the actual performance parameters of the network are obtained

through experiments with the prototype we will run simulations to determine what the

actual system throughput would be if a full scale network connecting heterogeneous

processors were available.

The simulator will also allow us to investigate various network control and task

allocation strategies and determine their effect on overall performance. Once the

optimum strategies have been determined we plan to implement them on a network of

VAXes and measure the real world performance of such a system. This network of

VAXes will initially be connected through the use of a high speed Ethernet, but as

development proceeds on the hardware for the optical network the Ethernet will be

phased out.

One of IPON's features is the use of heterogeneous processors, each tailored for

efficient execution of certain image processing tasks. These processors are

interconnected in such a manner that if a portion of a given image processing algorithm

can be executed in an extremely efficient manner on a certain processor, then an attempt

It A. .
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should be made to execute that task on that processor. Several problems ar~se when

attempting to perform this sort of optimization. One problem is that of measuring what

the performance of a processor is when presented with a specific task. The performance

of a processor depends on many factors and what is needed is a way of expressing these

factors in such a fashion that a task allocator can rapidly determine how well a processor
can perform a given task. Another problem concerns the task allocator itself. Even if a

processor's performance can be ascertained, the task allocation problem remains a NP-
complete problem and heuristics must be used to reduce the time taken to determine

task to processor allocation. An algorithm to perform such allocation has been

developed but experiments need to be performed to determine its effectiveness.

Development of IPON's programming system is proceeding concurrently with the
development of the hardware. The graphical programming language is being expanded

to provide a complete set of programming language constructs. The expanded language

will allow for the expression of highly parallel image processing algorithms in a manner

comprehensible to the programmer. In addition to expanding the language, work is

needed in the area of the user interface. This includes determining the most effective

manner of interactively manipulating graphical symbols and presenting these symbols in

a form which is understandable to the programmer.

To be a usable tool for image processing research, IPON must be able to rapidly

access large amounts of data from secondary storage. IPON is designed to operate at

real time rates (I frame every thirtieth of a second). At these speeds, traditional

magnetic storage devices form a severe bottleneck. Furthermore, their data storage
capacity is somewhat limited. To overcome these problems we are investigating

alternative storage technologies such as optical disks. One limitation of optical disks is
their write once characteristic. We hope to overcome this problem by using fast

temporary bulk store memory as a write buffer. Any temporary changes made to an

image will be stored in this memory. Only when the final result has been calculated will

the image be written to the optical medium. The software to control such a scheme and

simulations demonstrating the resultant increase in performance will be developed.

Hierarchical access to multi-spectral image data at variable resolution, size and

resolution is a characteristic of many complex image processing algorithms. PON will

support such access through the use of generic image processing tasks. A generic task
will be able to process any size or resolution image. To accomplish this, image access

4... * . .. 4 % '''.. ~ . . . .*. % . . . .4
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will be provided in terms of an arbitrary number of rectangular sub-images or segments

which may be configured with respect to one another without altering the actual image

data. Images can then be treated as a list of Segment Descriptor Blocks (SDBs) through

which image processing tasks access the actual data. Using SDBs, a given image

processing task can be written in such a way that it can process a large variety of image

formats without need for modification. Research into the question of how to efficiently

interpret the SDBs in the [PON environment is to be conducted.

4.4. Conclusions

[PON is meant to be both a tool to design image processing algorithms and a

system which can execute these algorithms in real time. We are taking the approach

that there exist machines that offer efficient solutions to certain image processing tasks

and what is needed is a way to easily and coherently integrate these machines so that

they can work together to efficiently execute complex image processing algorithms.

* Another function of IPON is to demonstrate that digital electronics is not the only way

to implement image processing algorithms. The system is to allow experimentation with

hybrid digital, analog and optical image processing techniques to determine the

*. advantages and disadvantages associated with such an approach. It is through the use of

an ideal network, that a system providing the desired capabilities of [PON is possible.

Initial results, both in the design of the software and the design of the network,

encourage us to believe that IPON is a viable concept. With further work, IPON will

become a flexible, programmer friendly and ultra-high performance image processing

system. Such a system has the potential to advance research in fields such as robotics,

where the need for an easy to use real time image processing system is large.

Development of the concepts for [PON are nearing completion. Implementation

and evaluation remain.
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10. GRASP Lab Memos:

What Can We Learn From
One Finger Experiments?
Ruzena Bajcsy, David Brown
Jeff Woifleld, Dan Peters
Technical Report MS-CIS-83-03
Grasp Lab 01
This paper describes results from recent experiments performed in our
laboratory with two different tactile sensors attached to a cartesian
coordinate system. The one sensor is in the form of a flat surface equipped
with an array of 8 by 8 strain-gage sensors on loan from the Lord Corp., USA.
The other sensor is in the form of a rigid finger of an octahedron tapered
with four sides and ended with one tip. All together the device has 133
pressure sensors. This device was obtained as part of US-French collaboration
from LAAS Toulouse, France (Dir., Prof. G. Giralt).

We shall report results on calibration , on physical properties of the
sensors, limitations on spatial resolution and pressure sensitivity. We have
investigated the classificatory power with respect to material hardness,
elasticity and the surface texture. Finally, we outline the open problems and
the near future plans.

Tactile Information Processing
The Bottom Up Approach
Working Paper
Rusena Bajcay, Greg Hager
Technical Report MS-CIS-83-38
Grasp Lab 09
A primal sketch for tactile information processing is outlined. It is
further argued that from the basic three primitives: hardness, surface
normals, and local curvature all other tactile features can be constructed.

The Recognition and Representation of 3D Images for
A Natural Language Driven Sene Analyzer
Amy Elizabeth Zwarico
MS-CIS-84-29
GRASP LAB 20
Two necessary components of any image understanding system are an object
recognizer and a symbolic scene representation. The LandScan system being
designed is a query driven scene analyzer in which the user's natural
language queries will focus the analysis to pertinent regions of the scene.
This is different than many image understanding systems which present a
symbolic description of the entire scene regardless of what portions of that
picture are actually of interest. In order to facilitate such a focusing
strategy, the high level analysis which includes reasoning and recognition
must proceed using a top-down flow of control, and the representation must
reflect the current sector of interest. This thesis proposes the design

.1
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for a goal-oriented object recognizer and a dynamic scene representation for
LandScan -a system to analyze aerial photographs of urban scenes. The
recognizer is an ATN in which the grammar described sequences of primitives
which define objects and the interpreter generates these sets of primitives.
The scene model is dynamically built as objects are recognized. The scene
model represents both the objects in the image and primitive spatial relations
between the objects)

A New Approach to Robotic Approach
Tactile Perception
Ruzena Bajcsy
Kenneth Y. Goldberg
MS-CS-84-31
GRASP LAB 02

Psychologists believe that tactile perception involves receptors located
in both the skin (cutaneous) and the joints (kinethetic). Research in the
area of robotic tactile perception has focused on cutaneous sensors,
producing tactile grids with increasingly improved resolution. A robot
developed at the University of Pennsylvania, however suggests that the
most efficient way to achieve tactile recognition is to process
kinesthetic information. This approach has implications for both
psychology and industry.

On Grasping With A Three-Fingered
Mechanical Hand
J. M. McCarthy
MS-C1S-84-32
GRASP LAB 03

This paper uses the generalized theory of screws to formulate the problem
Ir grasping a general solid object between the three finger tips of a

* ±echanical hand, and securely holding the object against the action of an
arbitrary set of externally applied forces. A condition on the geometry
of the grasp is presented which assures that the allowed motion of the
object can be opposed by frictional contact forces, and it is shown that
any such grasp can be broken by applying the proper choice of external
forces. The magnitude of this additional loading is a measure of the
quality of the grasp.

Computer Architecture for Grasping
Samuel M. Goldwamr
*MS-C I-4-33
GRASP LAB 04

The Integrated Tactile Network Architecture or ITNA is a hierarchical
system for managing the interaction of tactile sensing and motor control
in the 3-D active sensory environment, The overall ITNA includes custom
dedicated hybrid front end tactile arrays incorporating electronics and
microprocessors for sensor linearization, tactile information
preprocessing, and local feature extraction; approaches to the distributed

4.
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motor control of manipulator fingers for grasping;, interconnection
networks for guarded movement and reflex arcs; and special purpose
hardware for model generation derived from tactile information. This paper
primarily addresses the overall ITNA structure and, in particular, the
design of an intelligent sensor array and its associated communications
subsystem.

Feeling By Grasping
Ruzena Bajcsy
Michael McCarthy
Jeffrey C. Trinkle
MS-CLS-84-34
GRASP LAB 05

This paper specifies constraints based on the geometry of the grasped
object, on geometry of the hand and the kinematics of the constrained
object which determines how to grasp an object.

Surface Descriptions From Vision
and Touch
Peter Allen
MS-CIW-84-35
GRASP LAB 06

The goal of vision is object recognition. Recent research has shown that
the human visual system creates a surface description of a scene,
including depth and orientation information at all points in a scene as a.
first step before creating an object centered 3D description. This
description is referred to as a 2 1/2 D sketch.

Machine vision systems presently do not have the capability of creating
this 2 1/2 D sketch from visual information alone, especially for curved
surface objects. By using tactile data in cooperation with vision, a
method is proposed for creating a surface description of an object. This
surface description uses bicubic surface patches as a primitive.

Once a surface sketch is created with bicubic surface patches the next
steps in the hierarchy of processing are feasible, including a
transformation to a full 3D object centered description.

Stereo Processing of'
Aerial Imagp
Rusena Bj=ey
David L. Smitley
MS-CIS-84-36
GRASP LAB 07



39

An Architecture for the Real-Time
Display and Manipulation of
Three-Dtmensional Objects
S.M. Goldwasser
R.A. Reynolds
MS-CLS-84-37
GRASP LAB 08
A special purpose multiprocessor architecture has been developed which
facilitates the high speed display and manipulation of shaded three
dimensional objects or object surfaces on a conventional raster scan CRT.
The reconstruction algorithms exploit the capability to divide object
spaze into totally disjoint cubical regions permitting multiple display
processors to access independent memory banks concurrently
without describing rotation, translation, and scaling are incorporated into
one short table facilitating very rapid manipulation of the image display
presentation.

A Generalized Object Display
Processor Architecture
S.M. Goldwmsur
MS-CIS-84-38
GRASP LAB 10
A multiprocessor architecture has been developed which addresses the
problem of the display and manipulation of multiple shaded three
dimensional objects derived from emperical data on a raster scan CRT.
F~ally general control of such parameters as position, size, orientation,
rotation, tone scale, and shading are accomplished at video rates
permitting real-time interaction with the display presentation.

The GODPA architecture is based on a large number of relatively simple
processing elements which access their own memory modules without input
conflict. Reconstruction algorithms are used which do not require any
complex arithmetic or logical high speed operations. This hardware
organization is highly modular and expandible and is ideally suited for
implementation with VLSI technology.

Page Composition of Continuous
Tone Imagery
Samuel M. Goldwasmw
Donald E. Troxel
MS-C1-84-39
GRASP LAB 11

A system has been developed which represents an effective unified
framework for interactive layout and page generation of pictures and
linework for applications in the graphic arts. The functional structure
and logical organization of this system are based upon the segment display
processor (SDP) architecture which offers a generalized approach to the
manipulation of multisegment multiformat data. Interactive layout is
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accomplished with the aid of a graphics digitizing tablet and proof TV
display. Subsequent input scanning, sizing, enhancement, and merge
operations are fully automatic. The system handles arbitrary shaped
regions, type-on-tone, and optimally codes areas of continuous tone and
line art copy individually. The PAGES system described in this paper is
centered around a software emulation of the SDP supporting continuous tone
imagery and scanned type. Most of the effort devoted to this development
will be directly applicable to an SDP-based system implemented with the
aid of special purpose high-speed hardware in the future.

Grasp Lab Memo:
Construction of a Three
Dimensional Surface Model
Eric Krotkov
MS-CIS-84-40
GRASP LAB 12

This report describes the structure and construction of an initial
intermediate level surface modelM0 subject to the criteria and
constraints imposed by the domain of stereo aerial imaging. M0 is
a surface-based polyhedral network supplemented with relations. It is
constructed from data derived from low level vision processes, and thus
can be aptly called "bottom-up" or "data-driven." At the same time the
representation is useful for high-level "top-down" processing. The model
is built on top of SurfUP and has been fully implemented and documented,
including: routines to compute relations on faces; and a high level
driver program.

Quarterly Progress Report
Volume 2, No. 1
MS-CIS-84-41
GRASP LAB 13

Active Touch and Robot
Perception
Ruzena Bajcsy
Kenneth Y. Goldberg
MS-CXS-84-42
GRASP LAB 14

Psychologists distinguisa between active and passive touch. The latter
arises when objects are brought into contact with a passive tactile
surface, such as the palm of the hand. Active touch describes a dynamic
exploration of objects involving receptors located in both the
skin (cutaneous) and the joints (kinesthetic). Research in the area of
robotic tactile perception has focused on passive touch, developing
cutaneous grids with increasingly improved resolution. A robot developed
at the University of Pennsylvania, howeversuggests that the most
efficient way to sichieve tactile recognition is to process kinesthetic
information gained from active exploration. The results may be of.1
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interest to researchers in both psychology and robotics.

Computational Models of
VIsual Hypercuity
Eric Paul Krotkov
MS-CIS-84-43
GRASP LAB is

The process of visual hypercuity is described and analyzed in the terms of
information theory. It is shown that in principle, the detection and
representation of both luminance and edge features can be performed with a
precision commensurate with human abilities.

Algorithms are formulated in accord with the different representational
method and are implemented as distinct computer models, which are tested with
vernier acuity tasks. The results indicate that edge information

encoded either in the manner proposed by Marr and his colleagues
(as zero-crossings in the Laplacian of a Gaussian convolved with the
image) or when encoded as a simple filtered difference allows finer
spatial localization than does the centroid of the intensity distribution.

In particular it is shown that to judge changes of relative positions with
a precision of 0.1 see are in two and three dimensions, it is sufficient
to represent the displacement of an edge by the difference of two
Laplacian-Gaussian filters rather than by the difference between
interpolated zero-crossings in them. This method entails no loss of
relative position information (sign), allows recovery of the magnitude of
the change, and provides significant economies of computation.

Sphere Packing Algorithm
For Sparse 3D Points
Rusena Bajcsy
Franc Solina
MS-CIS-84-44
GRASP LAB 16

An efficient way for representing objects defined by sparse 3-D surface
points is described. Data collected by stereo and range imaging
techniques can be considered as an approximation of surfaces used for
volume representation by packed nonoverlapping spheres. The technique
described here is a modification of the algorithm introduced by R. Mohr
and R. Bajcsy in Packing Volume by Spheres, IEEE Transactions on PAMI-5,
pp. 111-116, 1983.

PAME Coordinate System
Jefffey C. Trinkle
MS-CS-S4-46
GRASP LAB 17

This paper is meant to document the various coordinate systems used in
PAMH. The matrix transformations are all defined, and their use is
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described.

PAME Micro Guide
Ed Walsh

MS-CIS-84-46
GRASP LAB 18

Quarterly Progress Report
Volume 2, No. 2
MS-CIS-84-47
GRASP LAB 19

Angy: A Rule-Based Expert
System For Identifying And
Isolating Coronary Vessels
In Digital Anglograms
S. A. Stansfileld
MS-CIS-84-49
GRASP LAB 21

This paper presents work being done in the development of a rule-based
expert system for identifying and isolating coronary vessels in digital
angiograms. The system is written in OPS5 and LISP and uses low level
processors written in C. The system embodies both stages of the vision
hierarchy: The low level image processing stage works concurrently with
edges (or lines) and regions to segment the input image. Its knowledge is
that of segmentation, grouping, and shape analysis. The high level stage
then uses its knowledge of cardiac anatomy and physiology to interpret the
result and to eliminate those structures not desired in the output.

The Image Proclsng Optical
Network: Advanced Architecture
For Image Proceming
Samuel M. Goldwasser
MS-CIS-84-50
GRASP LAB 22

The Image Processing Optical Network (IPON) is an ultra high
performance architectural framework being developed to support

a acquisition, low and medium level image processing and
analysis, image display, and image storage using digital and
hybrid technology. IPON assumes the use of the technology
of the 19Ogg and beyond including hybrid optical systems and
other novel devices which depart
from the strictly 'more gates on semiconductor' philosophy of the past
20 years.

IPON will be an MIMD network utlilizing non-homogeneous functional
nodes of a variety of types. rt will be dynamically partitionable and
reconfigurable using a non-blocking optical interconnection network.
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PON will support the use of optical-hybrid technology
for key components to provide high bandwidth communicatioas,
high capacity buffering, and certain types of high speed processing.
User level programming of IPON will be
accomplished using the concept of rocess level dataflow
control via an interactive Graphical Image Processing Language.

This paper outlines some initial thoughts on the organization and
implementation of IPON.

A Programming System For Distributed
Real-Time Applications
Insup Lee
MS-CIS-84-61
GRASP LAB 23

A distributed programming system designed to support the construction and
execution of a real-time distributed program is presented. The system is
to facilitate the construction of a distributed program from sequential
programs written in different programming languages and to simplify the
loading and execution of the distributed configuration language. The
language is used to write the configuration of a distributed program,
which includes resource requirements, process declarations, port
connections, real-time constraints, process assignment constraints, and
process control statements.

Final Report: The Design and
Construction of a Four Degree
of Freedom Camera Controller
John F. Summers
MS-CIS-84-62
GRASP LAB 24

A system has been developed that controls the positioning of a pair of camera
to provide the possibility of active visual sensing. The system uses an 8085
based microprocessor to monitor and update the position of the platform upon
which the cameras are mounted. The camera platform possesses four degrees of
freedom: up and down, side to side, pan motion, and tilt motion. The
microprocessor is interfaced to a VAX 11/750 such that programs running
on the 750 can control the platform motion. A series of higher level
manipulation programs have been written and installed as user utilities
on the VAX, running under Unix. These utilities the system user to place
control of camera positioning into the hands of image processing software.
This closes the camera positioning feedback loop, and should lead to
the development of autonomous "intelligent" camera manipulation routines.
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r PAMH Control Systems

Jeffrey C. Trinkle
MS-CIS-84-53
GRASP LAB 25

This report describes the position control algorithm, in joint
coordinates, and the grip pressure controller used by the PA VI-I system.
The linear analysis of the position controller is given here. The resultsare currently being used to determine the gains of the position
controller. The grip pressure controller presented is not yet
implemented.

Converging Disparate
Sensory Data
Ruzena Bajesy
Peter Allen
MS-CIS-84-54
GRASP LAB 26
Object recognition systems using single sensors (typically vision) are
still limited in their ability to correctly recognize different three
dimensional objects. By utilizing multiple sensors (in particular, vision
and touch) more information is available to the system. This paper is an
attempt to show the utility of multiple sensors and explore the problems
and possible solutions to converging disparate sensory data for object
recognition.

A New Development in Camera
Calibration -Calibrating a Pair
of Mobile Cameras
Alberto Isaguirre, Pearl Pu, and
John Summers
MS-CIS-84-55
GRASP LAB 27

Pennsylvania Articulated

Mechnical Hand An End
Effector To Determine
Shape By Touch
MS-CIS-84-56
GRASP LAB 28
This paper provides a description of the Pennsylvania Articulated
Mechanical Hand (PAMH)*, a mechanical hand with independent joint control
to be used for object recognition. PAMH is currently being developed at
the University of Pennsylvania. The mechanical design of PAMH is
presented and the piezo plastic tactile sensor used to determine spatial
resolution is detailed.

t......................
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Integrating Vision and
Touch For Grasping of an
Object*
Ruzena Bajcsy
MS-CIS-84-57
GRASP LAB 29

The aim of this paper is to present considerations that go into the design of a system tha

For the visual sensor we assume that we have available stereo cameras or their
equivalent. As the tactile sensor we use an articulated multifingered
hanol equipped with tactile sensory arrays as the data acquisition device.
We shall present available configurations of these devices. Then we shall
investigate the sensory processing, in particular what representation
schemas should be considered. We shall argue that the observer-centered
representation as opposed to the object-centered representation is more
important for grasping. Finally, a rule based schema for the control
strategies will be outlined. As examples, first some artificial geometric
objects than some real laboratory objects from the blocks world will be
analyzed.

Angy: A Rule-Based Expert

System For Identifying and
Isolating Coronar7 Vessels In
Digital Angiogrms
Master's Thesis
MS-CIS-84-63
GRASP LAB 30

This thesis details the design and implementation of ANGY, a rule-based
Expert System in the domain of medical image processing. Given a
subtracted digital angiogram of the chest, ANGY identifies and isolates
the coronary vessels, while ignoring any non-vessel structures which may
have arisen from noise, variations in background contrast, imperfect
subtraction, and non-relevant anatomical detail. The over all system is
modularized into three stages: The preprocessing stage and the two stages
embodied in the expert itself. In the preprocessing stage, low level
image processing routines written in C are used to create a segmented
representation of the input image. These routines are applied
sequentially. The expert system is rule-based and is written in OPS5 and
LISP. It is separated into two independent stages: The low level image
processing stage embodies a domain independent knowledge of segmentation,
grouping, and shape analysis. Working with both edges and regions, it
determines such relations as parallel and adjacent and attempts to refrme
the segmentation begun by the preprocessing. The high level medical stage
embodies a domain dependent knowledge of coronary physiology and anatomy.
Applying this knowledge to the objects and relations determined in the
preceeding two stages, it identifies those objects which are vessels and
eliminates all others.

* -.i V ~ . d ? P v.



Filling in the Gaps: A
Computational Theory of
Contour Generation
David J. Heeger
MS-CS-84-64
GRASP LAB 31

The problem of contour generation is posed as an example of perceptual
organization. A computational framework is presented which is a uniform
theory of contour generation. The same computational process derives
contours of all different types of subjective boundaries. The basic
process of contour generation is to il in the gaps in contours.
Psychophysical experiments on subjective contours are used to constrain
the process of filling in the gaps. The algorithm demonstrates the
feasibility of computing global properties (contours) from purely local
computations.

Detecting Tactile Feature Points
with a Robot Hand
Kenneth Y. Goldberg
Edward S. Walsh
MS-CLS-84-66
GRASP LAB 32

Changes in edge curvature can be detected by applying differential
operators to a list of boundary points. Such changes, or feature
points, provide a representation for object shape which is well-known in
machine vision. We apply this technique to sparse tactile data, using the
Pennsylvania Articulated Mechanical Hand to discriminate between six
sample objects.
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12. APPENDIXES

L. Stereo Procossing of Aerial Images

IH. LandScan: A Natural Language and 4
Analyzing Aerial Images

Mn. LandScan: A Computer Vision Syste

MV Recognition and Representation of 3D Objects for LandScan - A
Natural Language Driven Scene Analyzer

V. Implementation of a Gaussian-Smoothing Gradient-Based Edge
Detect-or
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Abstract

Two necessary components of any image understanding system are an object recognizer
and a symbolic scene representation. The LandScan system currently being designed is a
query driven scene analyzer in which the user's natural language queries will focus the
analysis to pertinent regions of the scene. This is different than nisy image
understanding systems which present a symbolic description of the entire scene
regardless of what portions of that picture are actually of interest. In order to facilitate
such a focussing strategy, the high level analysis which includes reasoning and
recognition must proceed using a top-down flow of control, and the representation must
reflect the current sector of interest. This paper proposes the design for a goal-oriented
object recognizer and a dynamic scene representation for LandScan - a system to analyze
aerial photographs of urban scenes. The recognizer is an ATN in which the grammar
describes sequences of primitives which define objects. The Scene Model is dynamically
built as the objects specified by the queries are recognized. Thus the control of the scene
modelling is top-down, reflecting the user's interest in the scene. The Scene Model
represents both the objects in the image and primitive spatial relations between these
objects.

1. Introduction

LandScan (LANguage Driven SCene ANalyzer) is a goal-oriented computer vision

system which uses natural language to drive the scene analysis of 3D images of aerial

views of urban scene. Goal oriented scene analysis restricts the analysis to those areas of

the scene which are currently of interest to the user of the analyzer. Both recognition

and modelling are driven by user queries. Answering these queries will require the

foll wing reasoning operations to be facilitated:

I. determining the existence of an object

2. finding an object part

3. determining locative relations, both simple and complex, among nbjects.

The object recognition paradigm allows the rst two operations to be performed. The

Scene Model - objects and the relations between objects - allows previously recognized

*i objects to be referenced and determines the locative relations among objects.

This paper will propose a solution to the problem of goal driven recognition and

representation of 3D objects in aerial views of urban scenes to be used by a language

driven scene analyzer. An Augmented Transition Network (ATN) has been chosen to

'................. .-.. .... r... .. '. ... ,........-. " ........................ - -. *%
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perform the object recognition because it has a top-down flow of control which facilitates

the interface between the queries and the recognition process. It also represents in a

perspicuous manner the global knowledge necessary for recognizing objects in this

domain. A dynamic scene model will be generated incrementally as the user focisses the

image analysis to areas of the image which are of interest to him/her. The Scene Model

symbolically represents the objects which have been recognized and the primit;ve spatial

relations which hold between them.

First, the related work will be surveyed. Then a brief overview of the LandScan

system will be presented. Next the design of the ATN used for object recognition wiU be

discussed. Following this the Scene Model will be described.

2. Related Work

A large corpus of research on aerial image understanding per se exists, [Harlow 841,

[Hwang 831, [Nagao 791, [Sloan 81], [Quam 78], [Faugeras 81], [Glicksman 831, [Reynolds,

et al 841, [Potmesil 83Jand many general vision techniques are applicable to the aerial

domain. Large aerial projects have been undertaken at USC [Nevatia 831and at SRI

[Fischler 831

The 3D MOSAIC scene understanding system [Herman 831incrementally derives a

scene model of an aerial view of an urban scene. Like La;-dScan,the scene model is

dynamic - constructed incrementally as more data becomes a' ible. Domain-specific

knowledge is used to help identify incomplete objects. A fundam-ntal difference is that

the construction of the Scene Model in LandScan is goal driv .n and reflects the user's

interest in the scene.

ATN's have been used almost exclusively in natural language processig [Bates 81],

[Winston 791, [Winograd 83!. A notable exception to the use of ATN grammars for

% V
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natural language understanding is the system designed by Tropf and Walter [Tropf

831 which uses an ATN model for the recognition of 3D objects with known geometries.

The recognition process performed by their system is one of manalysis-by-synthesisa in

which hypothetical model instances (prototypes) are generated and then verificd by the

ATN. The verification process compares the prototypes to the actual 3D data using the

ATN. If the similarity between the prototype and the image exceed some threshold then

the prototype is considered to be a model instantiation of the actual data.

Shapiro and Haralick [Shapiro 84] describe a hierarchical, relational 3D model

which is influential in our design. Their model provides precise, accurate information to

be used by low-level vision and inspection processes as weil as information required by

high-level vision and reasoning process. All of the information is represented by using

aspatial data structuresg, each consisting of a recursive set of relations. The hierarchy

consists of four levels: world, object, part, and surface/are.

Rosenthal [Rosenthal 811 proposed a model and interpreter for analyzing aerial

images of urban settings. In some ways, Rosenthal's work was the impetus for this

system. He proposed a purely hierarchical model of the world which is ordered by the

ON relations and a goal driven production system for the recognizer. It has a database

which contains descriptions of objects and regions. He introduced an Object Description

Notation to encode a set of descriptors which would be adequate for the sytem to

describe an object in the scene.

The work of Talmy and Herskovits [Talmy 831 [Herskovits 821 [Herskovits 841 has

influenced the design of both the topological relations in the models and the choice of

linguistic attributes which must be associated with objects in order to insure a robust

and reliable natural language interface. It is from their work that the need for a single

meaning for a single relation was discovered.

. . . ....- -,.- *..-.. -. *.- -,.- ,.- . . . .-, -'.;-,-, , . *. * -, . -, . . - .% - - - . -
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3. LandScan

LandScan is a query driven scene analyzer for 3D aerial views of urban settings

which uses low, middle and high level vision processes, high level reasoning and natural

language understanding to analyze an image. The low level image processing routines

detect edge points (edgels), perform stereo matching to obtain the 3D information crucial

to the higher level analysis, and segment the pict:-re into various picture primitives -

edges and regions. The middle level imaging modules add topological properties to the

regions detected by the low level routines creating a Surface Model. The high level vision

uses the regions and topological properties of the Surface Model along with a priori

knowledge of the domain to identify a subset of these regions as an object. Operating

simultaneously with the recognizer is a modeler which creates a model of the scene

which facilitates high-level reasoning. Finaly, the natural language interface and high

level reasoner parse queries, search the image for the data in question, and using the

world and object models generate the appropriate response to queries.

All low and middle level image processing is performed in a bottom-i'p fashion

when the digitized image is presented to the system for analysis. The high level vision

uses an ATN driven by the queries parsed by the natural language interface to recognize

objects and build the Scene Model. No high level recognition or analysis is performed

until a query is made. When a question is asked, the Scene and Surface Models are

analyzed only as much as is necessary to enable the generation of an adequate response

for the user. Only those objects expressly mentioned in queries are represented in the

Scene Model. Although using this recognition strategy will increase the time necessary

to answer a question, it will probably reduce the overall amount of work which is done in

analyzing a scene. The system will not analyze the entire scene, only those areas of

interest to the user.
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Each object in the scene is represented by a labelled set of polyhedra. The

polyhedra was chosen as the primitive for the representation of objects. This choice w3.s

not arbitrary, but carefully considered in the system domain, aerial photegaphs of

urban scenes. Looking at such images they appear to be composed of polyhedra of

various sizes and shapes at different distances from the ground. Eoth the Scene and

Surface Models are implemented in SurfsUP [Radack, et al 841.

In order to perform the high level vision and reasoning tasks required by this

system, world knowledge must also be encoded into the system. This global knowledge

will be used to recognize objects, understand natural language queries, and search the

Scene Model to obtain an answer to a query. Presently, three sources of a priori

knowledge have been determined necessary to perform the above mentioned tasks. They

are represented by an ATN grammar which demcribes the manner in which surfaces are

grouped to form objects, a World Model &Ld an Object Model. The World and Object

Models are very similar to those in the Shapiro and Haralick [Shapiro 841 system as well

as Rosenthal's Conceptual Hierarchy [Rosenthal 811. Like the hierarchical relational

model of Shapiro and Haralick, the World Model describes the features and relations of

the objects in the domain. The objects are those which can be expected in an urban

scene - buildings, street,s, sidewalks, etc. The Object Model represents the expected

physical features and linguistic properties of the objects in the domain (object parts and

those features which affect the usage and interpretation of a spatial constructs - phrases

describing the spatial relations between objects) [Talmy 831, [Herskovits 821, [Herskovits

841.

S..... ' .
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4. Object Recognition

An Augmented Transition Network (ATN) has been chosen as the paradigm for

object recogniion in LandScan. It is composed of three parts: the grammar, a

dictionary, and an interpreter. The grammar represents the a priori or world knowledge

that the system must have in order to recognize objects and assign them °culturalo

labels (ie. building, street). The dictionary, Surface Model, represents the actual data

which will be used in the recognition process. The third component of the recognizer is

the Lisp program which provide the control structure for the process. The syntactic

approach has been adopted despite earlier failures [Fu 82]. Earlier attempts using a

syntactic approach failed because the primitives which were combined were too low level

(edges, etc) and the matching sequences were too strict. In LandScan, the primitives

used are higher level (surfaces) and thus have more information associated with them.

The grammar rules in LandScan do not specify a strict matching sequence. Instead they

specify the properties which must hold between the simpler components of an object.

Since the rules are more general - there are fewer in the system thus simplifying the

recognition process. The following sections will justify the use of an ATN to perform

object recognition and discuss the three components comprising the recognizer - the

world knowledge which is represented by an ATN grammar, the visual data or

dictionary, and the ATN interpreter which drives the recognition strategy.

4.1. Justification for the Use of an ATN

The goal of the LandScan system is to perform query driven analysis of urban

scenes. This places two constraints on the object recognition process: it must have a

top-down control structure, fimding only those objects references in the query, and it

must encode global knowledge about a domain in which objects of the same type may

have diverse appearances.

***,**%.7.



7

The entities found in an urban scene fall into several general categories - buildings,

streets, sidewalks, vehicles, and fields to mention a few. Although the objects in the

domain are known, their appearances cannot be precisely predicted. The ATN

formalism enables the global knowledge about object appearances to be encoded as a

generative model (grammar) for constructing objects from the primitives in the scene

while driving the recognition in a top-down fashion.

Although the ATN provides both the top-down control structure as well as the

representation of the global knowledge necessary to perform object recognition in this

domain, the inherently linear ordering it places on the scanning of input does not seem

appropriate for a vision process. We do not obtain the data from a scene one "elcment"

at a time, nor is it likely that we match the features which we have learned to associate

with an object in a specific order. Instead, it is likely that we match on "prominent"

features in the visual data. Despite these fundamental differences, the ATN is

appropriate to use in recognition. The problem with using "prominent features" is that

it is difficult if not impossible to model these features into a system. Thus we must fall

back to describing an object in terms of the primitives which define it. The ATN

grammar presents a straight forward description of a sequence which generates an object

from a set of visual primitives.

Thus an ATN is appropriate because it has a top-down control structure, a

straight-forward description of the global knowledge necessary for performing object

recognition, and separates the control structure from the grammar simplifying

modification of the recognizer.

V. %*.
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4.2. The Object Recognition Grammar

The ATN grammar represents the world knowledge necessary to enable object

recognition. It is a generative model describing in a sequential manner the set of faces

and the relations between these faces which must appear in the Surface Model in order

to recognize a particular object.

The grammar as written is a set of two level networks. This is considerably

simpler than most ATN's which handle natural language utterances. Ea-ch network is

represented by a set of grammar rules. The bottom level concerns itself with the

recognition of *simple objects.0 An object is simple if its further decomposition into

parts will result in no entity which is in the domain of objects. For example,

decomposing a building with a pitched roof will result in two halves of a pitched roof.

Neither of these entities are considered objects in the domain - they are parts of objects.

This level consists of the networks SIMPBUILD, SIMPSTREET, SIMWFILD, and

SIMPSDEWALK. The top level combines the simple objects which were recognized in the

first level of the network into ocomplex objects'. A complex object is decomposable in a

nontrivial way into at least one simple object. The top level networks are BUILD[N G,

STREET, FIELD, and SIDEWALK.

A network is a set of nodes and arcs. The nodes represent how far the system has

progressed in the object recognition (the state of the computation). The arcs represent

the patterns (object primitives of simple objects) which must be matched in order to

proceed further in the recognition of that particular object.

The states have two part names [Bates 81). The rirst part of the name indicates

the name of the network and the second part describes either how far along this state is

in the recognition process or the subtype of the object being recognized.

.n 
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The arcs are represented by lists of the form (TYPE HEAD TEST ACTION). TYPE

indicates the category or arc type. The possible arc types in this system are:

* PUSH - call to a osimplea network

* CAT - search the dictionary (Surface Model) for an appropriate face

e POP - return to a calling network or add the recognized object to the Scene
Model

* JLlv[P - go to the next state without searching for a primitive object or face

HEAD is dependent upon the arc type. HEAD can be a syntactic category - words or lists

of words, a constituent type, the next state, or the form in which the data "parsed" is to

be returned. TEST is a list (possibly empty) of tests to be performed before the arc can

be traversed. The tests specify the relations which must hold between various

comonents of the object, provide further checking of the features of a component, and

provide context sensitivity. ACTION is a list of actions to be performed as the arc is

traversed. The possible register setting and structure building actions are:

* (SETR REG VALUE) - sets the register REG to the evaluation of VALUE

* (SETRQ REG STRING) - sets the register REG to the literal STRING

* (ADDR REG VALUE) - appends the evaluation of VALUE to the end of the list in
REG

" (BUILDQ <OBJECT-TYPE OBJECT SUBTYPE>) - builds an object instance

o OBJECTTYPE is a major object type

o OBJECT is the OBJECT register

o SUBTYPE is the SUBTYPE register

There are two registers associated with the system - a SUBTYPE register and an

OBJECT register. The SUBTYPE register s a feature register whose value is a string

indicating the subtype name of an object. The OBJECT register is a role register

containing a list of all the faces which comprise the object. As faces are found which

match the generative sequence described by the grammar, they are added to the OBJECT
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register.

4.3. The Dlctlonar7

The dictionary in the recognizer is the Surface Model which represents both the

geometric and topological information about the surface primitives in the scene.

[Krotkov 841

The geometric attributes associated with each surface or face are the area of the

face, its surface normal, centroid, shape, type and compactness. The relations between

the faces represent the topological properties of the faces. In order to do recognition six

topological relations are necessary - ADJACENT, CONTIGUOUS, LOOKSADJACENT,

LOOKSCONTIGUOUS, ABOVE, and CONTAINS. Two faces are considered

ADJACENT if they share at least one point. Two faces are CONTIGUOUS if they

share at least two points - a segment. The LOOKSADJACENT and

LOOKSCONTIGUOUS relations hold if the ADJACENT and CONTIGUOUS relations

respectively hold between the two faces projected onto the x-y plane. A face is

considered ABOVE another face if the z coordinate of the centroid of the first face is

strictly greater than the z coordinate of the centroid of the second face. The

CONTAINS relation means that one face is completely surrounded by another face when

they are both projected onto the xy-plane.

These topological relations are represented by adjacency matrices - one matrix per

relation. The "nodes" in the graph represented by the adjacency matrix are the faces

which have been found in the scene. The matrix is an n x n boolean array where 0

corresponds to no relation between faces and a I to the relation holding between them (n

is the number of faces in the surface model). None of the relations are reflexive.

ABOVE and CONTAINS are transitive, ADJACENT, CONTIGUOUS,

LOOKSADJACENT and LOOKSCONTIGUOUS are symmetric.

.5 ,*



4.4. The Control Structure

Unlike most ATN's (in natural language understanding as well as other

applications) which have been designed to parse an input string, this system will not

have an object which it wishes to parse into its components in order to confirm that it is

a valid object. This ATN interpreter operates as a generator taking a grammar and a

dictionary as input and producing strings as output. The output string from the object

recognizer is an object instance.

The control structure for the ATN is provided by a generator which is a series of

LISP functions. The frst function GENERATE is called with one argument - the

starting state of the grammar. The initial configuration (initial state, register list, stack)

is set up by this call. A function ATN is then called with the starting state. ATN is the

function which selects the arc which is to be followed. The backtracking is a simple,

depth first strategy. If the first arc fails then the next arc in the arc list associated with

the state is called. From ATN the EVALARC function is called with the arc to be

evaluated and the association list representing the set of registers. First EVALARC

determines the type of arc which is being considered as a possible transition. Once the

" arc type has been determined, the function and the tests associated with that arc are

performed. Finally, if all the tests are true, the actions are evaluated by the

EVALACTIONS function and the ATN enters a new state and the traversal continues in

this fashion until a final state is reached or the functions gets halted in a non-final state.

5. Representation - The Scene Model

The final representation for the scene must facilitate the operations necessary for

high level scene analysis to be performed. These actions include determining the

relations, both complex and simple, among objects; and locating and identifying specific

objects and object parts. Since the analysis is query driven a dynamic Scene Model was
-p
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designed which facilitates these operations, paying special attention to the representation

of the primitive spatial relations between objects. A dynamic Scene Model is one to

which information can be added to it as further image analysis occurs. The scene model

in 3D MOSAIC [Herman 831 is also incrementally derived as more data becomes

available but the modelling process is data driven. LandScan builds a model using a

query driven control. In other words, the modeller obtains more data as the user directs

the vision system to analyze other areas of the scene which are of interest to him/her.

Thus the Scene Model reflects the user's interest in the scene. Tbe LandScan dynamic

scene model is especially useful because it is flexible. The accuracy of the scene model

increases as new data is acquired. Thus old hypotheses can be discovered false, deleted,

and the scene model updated to reflect the more accurate understanding of the scene. In

LandScan, when the scene analysis of a new image begins the scene model is empty. As

questions are asked, the scene analyzer/constructor searches for the entities whose

existence is in question using the object recognizer described above. As soon as the

objects queried are found they are added to the the Scene Model. Thus the Scene Model

also reflects the history of the user's interest in the image. The Scene Model is composed

of two components: a list of objects currently known to be in the scene and a set of

matrices representing the primitive relations which have been found necessary and

sufficient for performing further scene analysis.

Keeping a list of objects known to be in the scene allows the addition of further

information to the Scene Model to be a trivial task. The object list component of the

Scene Model is the set over which the primitive spatial (topological) relations is defined.

Therefore adding the new tuples to the relations will only involve calculating the

relations between the new entities and the new set over which the relations are defined.

Thus the choice of dynamic model is feasible and will allow for a top-down scene

analysis.

* . % . . . * .'].* . . .. . *
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5.1. The Object List

The first component of the Scene Model is the object list. The objects on this list

have been recognized during previous scene analysis operations end are represented by

polyhedral surfaces alone. Thus to the high level reasoner it appears that objects are

composed of only bounded planes - primitives at one level of representation. The use of

a single primitive (or a set of primitives which are not composed from one another) is

conceptually clean to work with and is adequate for modelling objects in this domain.

Each instance of an object in the scene has the information associated with it which was

determined necessary to facilitate further scene analysis. The components of an object

record are a name, the list of faces comprising the object, its location in Euclidean three

space, and an indication of the subtype of the object. The name of the object indicates

the type of the object - one of the objects which can be expected in the current domain.

The indication of the subtype gives more specific information about the object - the

expectations one can have about an object when analyzing a scene. The face list

represents the set of polyhedra which comprise the object. The metric locaticn in

Euclidean three space is approximated by the centroid of the object. The centroid of an

object in this system is defined to be the average of all the centroids of the faces on the

face list of that object.

5.2. The Relations

The relations in the Scene Model represent the primitive relations or topological

properties between objects in the scene. The same six relations as in the Surface Model

are adequate to represent all relations, both simple and complex, among objects using

various forms of relational composition. These six relations - ADJACENT,

CONTIGUOUS, LOOKSADJACENT, LOOKSCONTIGUOUS, ABOVE, and

CONTAINS - are defined over the set of all objects currently recognized in the scene.

The relations are represented by their adjacency matrices because the adjacency matrix

ILI .



14

is easily updated and makes composition of relations simple. The composition becomes a

simple matter of boolean matrix multiplication for which there are many fast and

efficient algorithms.

The definitions of the four relations are very similar to those of the Surface Model.

CONTIGUOUS is a subset of ADJACENT. Two objects are said to be ADJACENT if

they satisfy the following condition:
3FACE 1 E OBJECT, and 3FACE2 E OBJECT,)
such that FACE 1 ADJACENT FACE2

OBJECT, is CONTIGUOUS to OBJECTn if:
3FACE 1 E OBJECT, and 3FACE, E OBJECT2

such that FACE, CONTIGUOUS FACE2

Once again, CONTIGUOUS is a subset of ADJACENT. These two relations are only

symmetric. LOOKSADJACENT and LOOKSCONTIGUOUS are defined similarly for

the faces projected onto the x-y plane.

The ABOVE relation is computed by performing a simple comparison of the

location fields, centroids, of the two objects. If the centroid of OBJECT1 is higher from

the ground than the centroid of OBJECT, then:

OBJECT1 ABOVE OBJECT,

The CONTAINS relation is the most difficult relation to compute . First the

boundary of the face list component of each object must be calculated. These boundaries

are then projected onto the xy-plane. The relation is then defined as follows:
Boundary(OBJECTI) n Boundary(OBJECT 2) a Boundary(OBJECT l )

then OBJECT2 CONTAINS OIJECT1

Boundary(OBJECT 1 ) n Boundary(OBJECT2 ) = Bounday(OBJECT2 )
then OBJECT1 CONTAINS OBJECT2

ABOVE and CONTAINS are only transitive.

S.. '.* * t .. '
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5.3. Justification of the Scene Model

It remains to show that the proposed Scene Model both adequately represents the

objects in an image and facilitates the successful execution of analysis operations. As

mentioned above, most of the analysis operations will fall into one of three categories:

determining the existence of an object, finding an object part, or computing the relation

which represents a locative construct relating objects. The existence of objects will be

resolved in one of two ways - finding the object in the scene model by searching the

object list, or using the recognizer to find a new instance of the object. To find a part of

an object its face list will be searched until the part is found using the global knowledge

about parts embodied in the object model. As for resolving the interpretation of locative

constructs, the relations allow objects to be located relative to other objects in the scene

using simple matrix operations. Suppose the question were asked, 1s[ there a car on the

street?, An object of type CAR is ON an object of type STREET if the following

primitive relations hold:
CONTAINS(STREET,CAR)
ABOVE(CAR,STREET)

The reasoner would determine if the CAR is ON the STREET by calculating the

following relation composition:

CONTAINS * ABOVET

which would be calculated by a simple matrix multiplication of the CONTAINS

adjacency matrix and the transpose of the ABOVE adjacency matrix. So the

understanding of relational expressions will be accomplished by composing the primitive

relations. The necessary compositions of primitive relations will be determined by

linguistic knowledge used by the natural language interface in understanding the queries.

Since the model facilitates these three operations which are essential to any scene

analysis it, in fact, is robust enough to be used by the LandScan image understanding

j! system.

ii'
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6. Conclusion and Results

The recognizer and Scene NMode.er are currently running on synthetic data. The

low level modules have not yet been interfaced with the high level modu!;!s. However

both have been tested on several different data sets. Figure I shows one synthesized

data set with the surfaces labelled. Figure 2 shows some results of running the

recognizer on this data.

This paper has described two modules of the LandScan system - the object

recognizer and Scene Model. It is the Scene Model which is used by the natural language

interface to answer queries about the scene. This representation of the image provides a

module which allows the primitive spatial relations represented in this model to be

combined and analyzed by the high level reasoning processes to reflect the meaning of

the user's query. This provides a tool for analyzing a computational model for

understanding locative phrases (natural language utterances about the spatial relations

between objects).

The ATN formalism has been adopted for the recognition process. This choice was

made because the .formalism has a top-down flow of control which can be driven by

natural language queries and a grammar which describes in a perspicuous way a method

for finding the set of primitives which represents an object. The grammar does so by

representing recognition as a generative process which finds a set of faces corresponding

to a object in the scene. This search is constrained by the features which the faces must

have and the various primitive relations which must hold between faces in order for the

surfaces to be in the set defining the object. Although a recognition scheme in which

primitives must be matched in a specific order seems an odd choice for visual processes,

it has been shown that the formalism is applicable to the domain and at some future

time, it might be possible to design an interpreter which is not constrained by a left-to-

s
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right parsing/generating strategy. An additional advantage of the ATN is that the

recognition module will interface easily with high level reasoning processes. The

reasoner will determine from the query the objects of interest. It will then call the

recognizer and ask it to find those objects. When this has been done, the reasoner will

be able to generate the proper response to the question. The recognizer also interfaces

easily with the scene representation constructor using the BUILDQ action to add objects

to the Scene Model.

A symbolic representation for the scene and objects in the scene has been presented

which will facilitate high level reasoning processes driven by goal-oriented a, -lysis. The

dynamic Scene Model is constructed as LandScan is queried, thus reflecting the user's

change in focus. The Scene Model has two components: a list of objects currently

known to be in the scene and a set of primitive Iccative relations between these objects.

The object representation facilitates operations in which a part of an object is in

question. The object list and recognizer will allow the existence of particular objects and

object parts to be determined. It has been shown that the six primitive locative relations

- ABOVE, CONTAINS, ADJACENT, CONTIGUOUS, LOOKSADJACENT, and

LOOKSCONTIGUOUS - can be composed to obtain information about more complex

relations between objects as embodied in locative constructs. Thus the recognition

paradigm and Scene Model proposed will facilitate the top-down analysis of aerial images

guided by natural language queries.
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Figure I: Synthesized Urban Scene
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Inuoduction

Over the years much work in computer vision has been done using aerial images as input

data. Typical applications involving analysis of aerial images are automatic map generation.

analysis of natural resources, analysis of recounaissance photos, and guidance ;iystems for

autonomous dying vehicles. Currently. we are working on a complete system that will take as

input a high resolution, low altitude stereo pairs of urban scenes and will produce a high level

description of the scene. It is hoped that a query language can be formulated with which

. inquiries such as, 'How tall is the building under the curtor? can be answered.

To achieve this goal 3-0 information must be extracted from the image. To extract 3.,

information we have opted to use passive stereo. The main advantages of this technique :-

that it passive (as opposed to active techniques such as radar) and it requires no special rant e

gathering hardware other than the cameras themselves.

While stereo techniques have been successful in the field of cartog.-phy, their uiul,c.s

has been limited when used to extract 3-D information from urban ce'ncs. The maijor prob-

S[em with stereo is that of determining the corresp.ondence between piaxcs in the two imagvs.

A pixel in one image may have many candidate correspondences in the other.

En urban scenes the corra-;pondence problem is made even more difficult, do to seve-al

factors. A major problem is brought about by thc way the images are obtained. To cren.- a

targe enough baseline for adequate stereo 3cparation the aircraft that is taking th.: ::hutos

must dlrst take one photo, travel a distance equal to the oaseline ana taie another. Two p;.%-

[ems arise from such a process. One is the existence of moving objects such as antomobiiLS.

' ',,* ... *",- " - " ." - "-." . . .. . . *5% .- " .- " .-". ". .''- , ":"'A " " .,...-.-. .'.' .', . -" "," , ." '. ,



The matcher must now distinguish between diLparitic causcd by mction and dp.ritLc.

caused by depth. Another problem created by this diff-rcnc: ia time and '.'tioa is t.at

there can exit photometric diffcrences bk,,vccn the two imies. Atmcs-h't.ric vari--tons such

as ciouds can cause the two images to differ in focus, contrat, ---J average intcnsity. hcnce

making uniform feature extraction difficult.

In addition to the problems introduced by having two images takcn at differng times,

the rapid changes in depth that are prevalent in urban scenes also increase the difficulty if

the correspondence problem. Rapid changes in depth cause occlusions. T1hus certin features

visible in one. image may not be visible in the other. The matcher must therefore take into

account the fact that not all features in one image need match a feature in the other image.

We wish to generate a relatively accurae depth map given two aerial, stereo photos of

an urban scene. Here we are working with images of Washington, D.C. We will not attempt

to generate a complete disparity map using only stereo. That is, we wiUl no: try to match

every pixel in the two images. One reason that we are not attempting to 4eaerate a ccmp!cte

map is the feeling that a complete, accurate depth map would be imprusible to obtain frar-

the images we are providing as input. Second, we feel that . we am provided wvth accurate

depth points in locations that lend themselves to reasonable interpolation, then -we can do an

adequate job of filling in the depth map during a 3-D interpretation phas,, pos.sibly aided by

monocular depth cues. Another requirement of the depth map generator is the nieed that it

be formulated in a way that parallel implementation using hardware could be realized. In

addition, we would like the matcher to be as robust as possible thereby exte-ndind its applica-

bility beyond that of analyzing aerial photos of cities.

A review of the literature leads to the c!assifying of stereo matching t::hniq,es into two

major groups, that of area based matc--ng and the other Zroup that attempts to rztch

features such as edges, or zero cros-sings of an image convolved with a difference oL gaussian



(DOG) operator.

The ar.a bascd -proach attempts to match the rwo itmgcs by tr2kng a windUw trum

one image and finding what part of the other image gives a ma.mmum corrz.,tton. Since

correlation is mathematically expensive some methods use an 'interest opcrazor" to select

those areas of the image that are to be matched (Moravec 19SO, [Genn.-ry 19801. The area

based approach has been shown to produce ood results when proceung aazural scerns but

when applied to cultural scenes with many occluded surfaces the results are .nacceptable.

IIIN Thus, we decided to ue feature based maching as the basis for our depth map generator.

Several algorithms based on feature matching seemed to be particularly applicable to

aerial image procesaing. One such method developed by Grimaso [Grimson 19801 matches

features which have been atracted by sensing the zero crossaing in the diiference of tw,)

Gausians or as it is more commonly referred to in the Literature. the DOG filter. Further-

more, the image is processed at four different spatial resoutions with the matches from the

lower reolution filters guiding the matching process at the higher resolutios.

An algorithm developed by Baker [Baker 19821 and a similar one !eveloped by Arnold

[Arnold 19831 also seemed to be appropriate to the :.sk of generating the results we desrimd.

While there exist some differences between the algorithms, the main principlc behind both of

them is that ot achieving an optimum set of matches for each .-pipolar line : 'he image. The

way that this optimum match is found is by asgning eauch posible way of combining th.

cages found in each line a probability that one matches with the other. This prob-ibdity is cal-

culated from numerous parameters are gathered from the edge and other local inform*;on

from the neighborhood around the edge. The asignment of -dge correspondences which pro-

duct the largest total probability is then computed uing a dynamic programir ng technique

known as the Viterbi algorithm [Feruey 19731.

. . - .. , . , ." . - . ' ' " ,, . ,. • .. - ,



As mentioned previously. we decided to match features alon c ipkr lines. The curr.ent

version of the matcher uss zero crossings of an image convolved with (he DCTG vp>er~tcr

[Grimsoa 19801. However, before extracting the featurm for matching we filter the images

u.sing a nn-linear filter which we call a *double window smoother' ['Lee 19831. The filter coaz-

sists of both a median filter in combination with a mean filter. Howevier, the two are 'OiUcd in

such a maner that almostl all impus noise is removed. high frequency aoin: is suprse

and edges we still retained. While the filter is effective in removing nois., its ecs on the

ext raction of zero crossing is minimal, hence the process adds to the robustness of the

matcher.

As in Grimsot's matcher we diter the imag with a do% filter:

4.

atfour different widths (w =32, 16, 8, 4) and us the matches from the lower resolution

images (large w) to guide the matching pr-oces at higher resolutiouas (small w). However. the

matching prcs at each level and the method by which the prevt-, ly found matches are

used to guide higher resolution matching ame significantly different from Grimsoa's method.

At eh resodution ell we dep procss is used to determine whether a Then zero

vr in o iee cmaher ponds with a zero tof ng in the other magi. e will call e two

pha absolute and pobabilibti. In the ai te a ephaue vr- charnceri.sti of he r-o zero

rosinno in quesion are ompared and i they fail to meet o certain cteria the crrcson-

digs probabiity is a iven c value o zero. If the pairng not o;ecd in the oslute hc i

sh probabili is calcmlated that the two edV.s mach. Thgse pr eqbabilities (oim eoth the "-es-

lute and probabililtic phase) aWe then entered into a matrix, and the nodieid Vitri n ih-

elir [Baker 1982 s usen to dctcmnal he disparity proe a trodac the tlars total

- .

: o .. . -. . . . , • -• -.- • .-.- • ..- . . .", -" ." ". .- " . , -. -" - . . - . " . . - ... ' .'.7'
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probability.

Absolute Phase

I an :dge pairing fails to meet any of the following criteria a probability of zcro is

assigned to the edge.

CL The difference between the orientation of the two zcro crossiap

must be les than V" degrws.

C2. The signs of the slopes of both zero crosinp must be the same.

C3. The disparity must be less than some s prioti determined

maximum disparity.

C4. If a zero crssng in the current resolution image is within

+-w/2 of a matched zero crosing in the p-revious image, the

disparity must be within -w/2 of the disparity awsined to

the zero croing in the previous image.

C5. A.U disparities must be of the same sign (moanotonicity).

C6. The xearch range for corresponding zero crossings is constrained

by the matches found in the previous resolution image. Any

corresponding zero crossings found outside this range are rejected.

CI thiu C3 require no further discussion as :hey intuitively seem reasonable, and have

been shown to be effective disambiguators by Oritso. C4 was chosen as heuristic based on

the asaumpton that the previous matches were correct and therefore a match in neighborhi;d

f around this match in a higher resolution image should have a similar di.pariry. The loculL.:a-

tion error of the zero crossings appears to be -w12. That Li, a zero crossing is within *-' /2

pixels of the actual intensity change Siving rise to the zero crossing. Kence, the ch oic ii. a

neigh borhoodi size a( 4-vw/2.

N N . . . .% .- . . " % .
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A major assumption was made tbout the images. It is .xMiued that :hc images possc-

the property of moc onicity. Monotonicuy is the property that all disparities are 0 the samc

sign. That is if:

L I Matel"Sa with R I ao~iI > L

then

LZ must mach with an am R Z such that

R2> R t

°.

where is L the Y cow. at zero crossni n left ifmge

dId f. 1a the y COWr. in Pight ia.

Tail, narrow ob)ecs or large overhangs lead to a violation of this asmmption. However,

the near orthographic projection found in aerial images sev rly limits the chances that such a

violation would occur. Asmuming monotouicity and accurate previous matches, allows one to

use C5 and C6 as absolute criteria. Thus, C. u forcis monotonicity in the current resolution

matches. It C6 is violated, monotonaiciry between the current resolution matchcs And the

matches from the previous level is violated. Assuming monotoniciy aLso allows one to use -tie

Viterbi algorithm to determine the maximum probability disparity profile.

Probsalatfil MIOR

After the absolute phase there can still exist more than one candidate match for a given

zero crosin4. Each of these remaining pairings is assigned a probability ba:cd oa what I wt.,

call one-sided correlation.

As was mentioned earlier, area bpsed matching was succes f in creting diqiari.y fr!:p

for scenes with smail amounts of occlusion. Howcver, they failed when pre-cnted s.enes we:h

a large number of occluding surfaces. The reason for tailure is that when trying to correlate

. "... . . .... . ....-. . ....... . " " *
'
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an area of an image which contains an oc-cuding surface, p.it of that area has ao corr:L::.

Thus, the correlation found will be useless for that part of the image. In addition, correlation

- is computationally extensive. One sided corre!ation overcomes these croblems.

In matching, only those zero crossinp with orientations greater than 30 degrees f:orn

horizontal are considered since disparity information from horizontal edges is eztremely

difficult to achieve. In one-sided correlation a correlation window is centered around the zero

crossing and is divided into two regions by a vertical Line. A normalized correiation value ts

then calculated for both the left and right hand regions formed by the vertical line, uting the

following equation:

a(q.) - (q. (.)1

N- (q af2)-.r (q I)E (42)g (q i~a(qz}

NormaLized correlation is used to help eliminate the effects of photometric differences

between the two images. The probabtLity that the two zero crt.sinp match is then assigned to

the maximum correlation value of the two regions. If this probability is !css than some thrcs-

hold (chosen to be 2S) the probability is set to zeo.

The above procedure eliminates the occlusion problem associated with normal correla-

tion. To w this consader the following possible results from one-sided correlation:

- - - - 40..*



Case 1. Correlation vaiues from both left in, nght hand side

of edge are low.

Case 2. Correlation values from both left and nght hand side

of edge are high.

Cae 3. Correlation value for left hand side of edge is loa. and

right hand side is high.

Case 4. Cortelation value for right hand side of edge is low, ind

left hand side is high.

Case I correqxmsds to the case where the gven zeta croming .orrespondence is incorrect.

Cam 2 corresponds to the sittioa where the tro cromap am, NOT occluding thus both

areas on the left and right sides of the zero cro 8ing canm high correlaion values. Cases J

and 4 are similar in the sene chat they arise *ben the zero crinp in qucestioo are ozluc-

ang. Thus. the ares an one side of the zeta crovng need not correate b'it the rerA on othc,-

side (if this is indeed a correct pairing) will. Hence, in any one of the cas*s a high c.rreiatto,.

value for as least one side of the zero crnusng corresponds to an actual match.

The foretmentioned process thus handles the occlusion problem. It also "cads with the

computational expense of correlation, as only the man likely pairings have a corre!atioa valu

calculated for them.

After the correlation values are calculated for each zero crsn pair and thresholdcd,

there still remains ambiguous matches. Therefore. the probabilities for all pairin ar:

entered into a matrix =ad the modified Viterbi algoitt.m described by (T3akcr 1982 is used ti
I

determine the most likely disparity profile. The pairings giving rise to this pro le ace hen

recorded and used to guide the next higher resolution matching process. As these zat¢ccs are

I required to guide the ne cl evel of matching, a simple linear interpolation process as

N. , - ,. , . . , - . . - . . -- ..' . .' . -' . ,- .' . '' .- .. - .- '-' -. '-' - . .-: .. .-.-.. " " . , ..
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pcrformed to givc disparity vaiues to all vertical negibors of zcro crOSSLr g th a have b,:cn

matched thereby increasing matchiag performance at the next lowest .

Emilts

Matching results for one image (figure 1) can be seen in 5gures 2 thru 5. These are the

results from the various resolution filters (w - 32, 16, 8, 4). The bottom image in each figure

are the zero crcssings matched from the left image and shifted ty their correspondinK amount

of disparity. En addition, the intensity of a pixel is directly proportional to its dispanty. The

number of incorrectly matched pixels can be estimated from this display by comparing pixel

intensities to tho of their neighbors. Any sharp difference represents inconsistent matches.

Furthermore, if the shifted piils vary greatly in position from tho of the right image, this

too represents incorret matches. Using thew factors as criteria, the number of incorrectly

matched zero comsn in the highest resolution (w - 4) appears to be quite small (less than

10). The number of zecro np in the left image is 2264 hencc only .5% of the matchc are

incor ect. While the number of incorrect matches is low, the number of accur te matches is

enough to allow the generation of a surface using simple linear interpolation between matchc

zero crossings oan a given Line. If there does not exist two zero crossiags to interpolate

between, the disparity values are obtained from the previous line. This technique is currentny

uused only to produce a displayable disparity map and a more robust interpolation technique

may be needed to produce a more accurate, complete disparty map from the sparsc match

points. Figure 6 is an isometric view of the surface generated usng this technique.

% One-sided correlation in combination with some simple, absolute criteria for matching

produces many accurate matches. Further improvements in the quality of matches culd pos-

sibly be achi,;vea if some other feature than zero crossings were used. One miaht consider

using a robust edge detector such a3 the one proposed by Canny. Another area for possible

. .. . . . . " *a ' " " -% "%. " " " % % % .
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improvement !ics in the intc-pciatictn of the surfacc. An accurate diipwty map gcncr- ;tu 4t

each level would help the next lower level ot matching rejc-ct false matches.

One-sided correlation appears to di. ambiguate false matcnes as accurately as standlr-

correlation but avoids the problems that arise when attempting to deal with occlusions. This

feature is highly desirable when working with aerial im c s of urban scenes where occlusion is

promunent. En addition one-sided correlation can be used to decermine wtethcr a matchcd

zer crossing is in occluding zero crosang [Witkin]. This additional iniormation cnn the be

used to guide the interpolation step since knowing whether an edge Ls occluding can greatly

constrain possible surfaces.

Fu thermorc, the speed of our algorithm could be greatly increased with the addition of

special purpose hardware. High speed ,rocers to perform the DC and zero crowng

operamions have already been developed (NLsha 19831. In addition, since correlation is a well

undemood and widely used mathematical technique, many high performance algorithms and

processors exist to do corrlarion at speeds greater than those achievable on a typical SISD

computer. Since no inter-line dependencies ca. , a third method for achieving greater speed

is to dedicate a proccor per line.

Several proposed algorithms (Baker 1982j[Ohta 19.I !or the stereo matching problcm

attempt to increase the accuracy ot the matches by using tdree dimensional consuency

between matches as a constraint. While this technique is :ffectre at removing a large aumbcr

of false matches, the 5naL result usually retains a small percentage of fals- matches. Hcnce,

one needs to weigh tde advantages of reduced false matches (but not aal f2l.c matches) to the

disadvantage of the increased processing required to enforce three dimensional consistency. If

the matching process produces a very small number of flse matches (as does one-sided corrc-

lation) one should consider dealing with the false matches at interpolation time as oppored to

trying to cerz every false match (a ne'r imposible task) with such techriques 2s hree

dimensional consistency.

" * * -J' . *- / . ' *. " J' "4 * . . " . . ". /r . . .-/ o . ." \" -"" .. ., - . "," " " ". o" " " " " ," "
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F.nally, the aced to uas dynamic programming to providc the jrtim'lm disparity prudlI'

can be quesuioned. Usuaily, no ambiguous matches are cut-red iato the .natix: and seldom

docs a given zero crossing have more than two candidate matches. Thus. a simpler method of

disambiguating such as simply taking the maximum probability of the ambiguous matc t to be

the match. might be as effective as dynamic programming in building the ftnal protile. How-

ever, a uscable procedure has yet to be developed.

In concluson one-sided correlation appears to be an effective, cfficicet means of extract-

ing depth information from a stereo par.

'-
4-'~~,i .d.4.*
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Figure 1. W~nd..jws scicted foe matchirg
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Figure 2. Results withL Pter width 32.
Top left image - edgeLs detected in eft image
Top right image - edgeis detected in right image
Bottom image - edgeis matched in left image shift:d and

weighted by their diparity.

N



-16-

Figure 3. Results with filter -width 16.
Top !--&t itmoui - edgeis dctcctcd in left itnage
Top right inmag,. - edgcIs detected in right ima.ge
Bottom image - cd gels matched in left im:ge shifted 3nd

wegtd ytei ipait

ft.%
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Figure 4. Results with ,iiter width - S.
Top left image - cdg=Ls detected in left image
Top right imagc - edgcLs detected in right image
Bottom image - eigels matched in left image shiftid and

weighted by their dis-parity.
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Figure S. R~ults with filter width -4.

Top loft image - edgeis detected in !eft image
Top ri-he image -edgels detcted in right :m~i.c
Bottom image - edgels matched in loft irnagc shiftcd and

weighted by the-ir disparity.
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Figure 6. Isometric plot of interpolated aisparitics



IMPLEMENTATION OF A GAUSSIAN-SMOOT-HNG
GRADIENT-BASED EDGE DETECTOR

By David Talton
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Abstract

This report describes the theoretical aspects and implementation details of a
gaussian-smoothing, gradient-based edge detector. This edge detector is based

on Canny's 'Finding Edges and Lines in Images' [1]. In this report we discuss
the implementation of an algorithm and the results rather than the motivation
for the computation.

This report describes research done at the GRASP Laboratory of the University

of Pennsylvania's Moore School of Electrical Engineering. Support for the
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This report describes the implementation of an edge detection algorithm
based on the computation of the gaussian smoothed gradient of an image. It
describes the computation of the gradient and the procedure for locating edges
(Canny[1]). The ideas for this algorithm are from Canny[l]. This algorithm
locates local-maxima in the gaussian smoothed gradient of the image at a partic-
ular scale. No attempt is made to combine results across scales. The two steps
are described below: image gradient computation and non-maxima suppression.

IMAGE GRAD LENT COMPUTATION

Let I(,,.y) be the image intensity function and

G(z,y) be a gaussian filter where

We wish to compute the gradient of the gaussian smoothed image at some

scale, this is

V f -V (G-I)

where

f (x ) G (x y) f (x y)

The scale is determined by the standard deviation (a) of the gaussian filter.

Now,

V f -i., +if,

or,

V f -V (GfI)

-4(G-f), +j(G-I),

=m (,1) +j(G,1.)

This means that to compute the image gradient we compute its components:
the x-directional derivative and y-directional derivative of the image.
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From above we have,

f, =G, 1

and the filters are,

G. (-T Y)- = e '

Thus, we compute the directional derivatives of the image at a particular
scale by convolving the image with the filters Go( xy) and G,(x,.y). From the
directional derivatives we compute the gradient magnitude as

vf V- 7

and the gradient direction as

DIR t

The filters G,(x) and G.,(xv) above, are 2-dimensional filters. Because
these are separable filters we may compute the above convolutions by convolv-
ing twice with one dimensional filters.

Thi3 is,

0, (zT a) -0, (Y') 0 (x)

and the computation of f. and f, becomes

f . -G. (.c )G (y )*t

f, -G, (y) )(zO
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The order of the convolutions does not matter. To compute the gaussian
smoothed gradient of the image four one-dimensional convolutions are needed.

The filter coefficents are computed by integration of the filter over the pixel
area rather than simple sampling. As usual [1](5J[61, we can vary the scale of
the gradient calculation by varying the standard deviation (c)of the gaussian
(low-pass) filters.
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DATA FLOW DIAGRAM
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NON-MAXIMA SUPPRESSION

To locate local maxima in the image gradient we use Canny's scheme for
non-maxima suppression [1]. That is, we compare the gradient magnitude for a
given pixel (A) with the interpolated gradient magnitudes in the gradient direc-
tion (at points B and C).

Non-maxima suppression [1].

If the gradient magnitude at point A is greater than the magnitude at both
points B and C, point A is designated a local maxima.. Computationally, it is
easiest to make this comparison using the directional derivatives f. and f,
before computing the gradient vectors because the interpolation weights are
ratios of these values (see Canny[l] p. 82-3). See figure 3.

CROWLEY'S ?PEAKNESS"

Another method for locating maxima in the gradient magnitude array is
Crowley's [31 "peakness" measure. This method compares a pixel's gradient
magnitude with the gradient magnitude of 8 neighboring pixels. Pixels which
lie on ridges have a high 'peakness" because they have a higher gradient magni-
tude than most of their neighbors. The edge maps in figures 4 and 6 were gen-

erated using Crowley's method.

%
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PERFORMANCE EVALUATION

How can we judge the performance of an edge detector? Just what does it
mean to detect edges? What is the purpose of edge detection? There is little
agreement in the vision community over the definition of an edge and (I
believe) a growing concern over the purpose of edge detection and the nature
of low-level vision. Edge detection has usually been used as a preprocessing
step for some higher-level vision task (i.e. stereo, shape, etc.). Researchers
have been overly concerned with edge-detection methods, to the point of ignor-
ing the edge detector's interaction with other visual processes. The procedure
for edge detection discussed above also ignores interaction with other processes.
But, since we have developed a fairly successful adaptation of the edge detec-
tion described in Canny[l], I will discuss the more direct aspects of this imple-
mentation.

This implementation consists (as most edge detectors do) of two fundamen-
tal steps: derivative computation and feature detection. To be more specific,
this edge detector fits the mold of a *detection function' (Crowley[2]). That is,
linear filtering, followed by a non-linear decision procedure. The algorithm
described above also adds an in-between step (non-linear, filter result combina- -
tion) because we are computing the gradient magnitude. I am most satisfied
with the method of derivative computation, and less satisfied with the non-
linear decision procedure called "non-maxima suppression". There are several
ways to detect ridges in the gradient, and we intend to study a few of them
quantitatively. These include Canny's[1] non-maxima suppression, Crowley's
ridge detector[3] applied to the gradient magnitude map and another method of
my own device based on Haralick's Topographic Primal Sketch[4].

The non-maxima suppression scheme of Canny is sensitive to scale in that
the distance to the comparison points should vary with resolution. It is not
obvious for which scale the non-maxima suppression scheme is best. In gen-
eral detection functions (which work on a 9-pixel neighborhood) used after
smoothing with gaussians of different sigmas are not equivalent.

We seek connected, smooth, 1-pixel wide contours. Canny's non-maxima
suppression scheme does not insure this. I am interested in a local procedure
where nearby edges reenforce each other over the one-to-two pixel range to
produce short edge segments. I am interested in producing this directly from
the decision procedure.

The method described for computing the linear, gaussian-smoothed,

V %
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directional derivatives of the image is directly generalizable to the computation
of the second derivatives f., f, and f,. These are computable by separable
filters as above. I have seen no implementation of the laplacian of a gaussian
[51 using these (separable) derivative filters. All implementations use the
Difference of Gaussians as an approximation to the laplacian of a gaussian
because the DOG can be implemented using separable gaussian filters. But
implementing the laplacian of a gaussian can be done directly using the filters
specified above. The computational complexity is the same as the diffrence of
gaussians. (four one-dimensional convolutions)

In the future we will investigate the combination of edge detection results
across scales[6]. We have not addressed the question of sampling frequency in
scale space (one octave, half octave or something else), this again will be left
for future study.

ad.
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Figure 1. Cap image.

Figure 2. Gauian-smoothed gradient mapitiade of image.



Figure 3. Edges detected using Canny's [1] non-maxima suppression.
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Figure 4. Edges detected using Crowley's [3] ridge detectr.
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Figure 5. Washington D.C. image.

Figure 6. Edges detected using Crowleys rdge detector on the gaussian
smoothed gradient magnitmde.
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Abstract

LandScan (LANguage Driven SCene ANalysis) is presented as an integrated vision
system which covers most levels of both vision and natural language processing.
Computations are both data-driven and query-driven. In this report :re focus on the
design of the vision modules. Future work will investigate in more detail the design of
the natural language interface.

The data-driven system employs active control of stereo cameras for image acquisition.
and the bottom-up flow of control dynamically constructs a surface model from rultiple
aerial views of an urban scene. -

The query-driven system allows the user's natural language queries to focus analysis to
pertinent regions of the scene. This is different than many image understanding systems
which present a symbolic description of the entire scene regardless of what portions of
that picture are actually of interest.

A top-down flow of control dynamically generates a scene miodel after creating the
surface model. The object recognizer is an ATN in which the grammar describes
sequences of primitives which define objects and the interpreter generates these sets of
primitives. The scene model is dynamically built as objects are recognized, representing
both the objects in the image and primitive spatial relations between these objects.
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LandScan (LANguage Driven SCene ANalysis) is presented as an integrated vision
system which covers most levels of both vision and natural language processing.
Computations are both data-driven and query-driven. In the report we focus on the
design of the vision modules. Future work will investigate in more detail the design of
the natural language interface.

The data-driven system employs active control of stereo cameras for image acquisition,
and the bottom-up flow of control dynamically constructs a surface model from multiple
aerial views of an urban scene.

The query-driven system allows the user's natural lang.iage queries to focus analysis to
pertinent regions of the scene. This is different than many image understanding systems
which present a symbolic description of the entire scene regardless of what portions of
that picture are actually of interest.

A top-down flow of control dynamically generates a scene model after creating the
surface model. The object recognizer is an ATN in which the grammar describes
sequences of primitives which define objects and the interpreter generates these sets of
primitives. The scene model is dynamically built as objects are recognized, representing
both the objects in the image and primitive spatial relations between these objects.

LandScan:
A Natural Language and Computer Vision System

for Analyzing Aerial Images

1. Introduction

The aim of our research on LandScan (LAINguage Driven SCene A.Nalysis) is to

develop a system capable of dynamically updating and maintaining a model of an urban

world over multiple aerial views. The system will have a natural language front end,

through which users can query the system about what it sees, and to direct or

interactively assist the vision processing by restricting the analysis to those areas of the

scene which are of current interest, dynamically constructing models as the system is

queried.

A unique contribution of the work is that processing is both data-driven (Obottom

up,9 determined by sensor data) and query-driven ('top down,8 determined by user

queries). The integration of both methods into one system can help overcome the

shortcomings of each method employed independently. For example, if data-driven



processing were able to segment a graph of edges derived from the image into several

different connected components, query-driven information about what the system should

be looking for can help impose structure, and a unique segmentation, upon the otherwise

ambiguous data.

The data-driven processing starts with stereo aerial images and proceeds, by

filtering, matching, interpolating, and fitting, to reconstruct the surfaces in the scene.

The aerial domain buys the simplicity of planar surfaces. Two factors distinguish this

data-driven system from many others. First, image acquisition is controlled by feedback

from the query-driven system, and is undertaken by active sensors, actively probing the

environment. Second, the controlled environment of a scale urban model is a testbed

allowing precise verification of results and individual modules (it is being tested on real

images as well).

For query-driven processing an Augmented Transition Network (ATN) has been

chosen to perform the object recognition because it has a top-down flow of control thus

facilitating the interface between the queries and the recognition process. The scene will

be represented symbolically by the objects which have been recognized and the primitive

spatial relations which hold between them. The Linguistic Analyzer performs syntactic

analysis of the query to produce a symbolic representation which is then processed by

th. Reasoner. The Reasoner, using global knowledge of the domain will perform the

following reasoning operations:

1. determining the existence of an object

2. frding an object part

3. determining locative relations, both simple and complex, among objects.

It will also handle in a non ad hoe manner query failure. Also, the state of the Scene

Model represents the history of the user's interest in the scene.

F A ;;.p L
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This paper will describe the aerial domain, some related research, the

implementation of the data-driven and query-driven portions of the LandScan system,

and our plans for future work. A later paper will detail how natural language queries

will interface with LandScan to guide the scene analysis.

2. The Aerial Domain

Aerial images suffer from a poverty of context due to the great imaging distances.

Urban scenes contain featureless areas and large numbers of occlusion edges. Even with

the best possible use of image data, we generally can do no better than to compute a

sparse depth map of the imaged scene. For many purposes a sparse depth map is

inadequate, and the missing surface information must be obtained from other sources:

other "shape from ...6 processes, domain-dependent high-level knowledge, and real-

world constraints.

There are two major constraints in the aerial domain:

1. The data is obtained by taking aerial photographs of an urban environment.
Urban scenes are characterized by an abundance of straight lines. This
means that to a very good approximation the scene, as viewed from on high,
is composed of planar polyhedra, so that detected edges separate planar
surfaces, i.e., each edge arises because it is the intersection of 2 planar faces.

2. The image acquisition process is under our control, so the camera model is
known. Some combination of azimuth and elevation angles, Euler angles,
pan. roll, tilt angles are available and fully specify a *.t%4 homogeneous
transformation relating the position and orientation of the two cameras.

Domain knowledge includes such facts as roofs of buildings tend to be parallel to

the ground plane, while walls are perpendicular to it, and that sidewalks are thinner

(more compact) than roads.
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3. Related Research

A large corpus of research on aerial image understanding per se exists, [akey841,

[harlow841, [Hwang83], (nagao7g], [sloan8l], [quam781, [fauger.s8 1, [Glicksman83],

[reynolds84J, [potmesil83], and many general vision techniques are applicable to the

aerial domain. Large aerial projects have been undertaken at USC [nevatia83] and at

SRI [Fischler83].

The 3D MOSAIC project [Herman83] is geared toward the urban aerial domain.

Important differences in their strategy are that junctions are primitive, and a monocular

analysis is performed. At the level of object representation LandScan treats surfaces as

primitive, while 3D Mosaic treats faces, edges and points as primitives. The Land-can

representation of objects by their surface primitives was chosen because it is compact,

easy to analyze, and a representation sufficient for matching. Further, in 3D MOSAIC

hypotheses are generated about the continuation of occluded lines, shapes of faces, and

the extent of vertical faces. The construction of the scene model in the 3D MOSIAC

system is exclusively data-driven, while LandScan uses a query-driven approach for

constructing the Scene Model.

ATN's have been used primarily in the domain of natural language [BatesSil],

[winograd83], [winstonsT]. A notable exception to the use of ATN grammars for natural

language understanding is the system designed by Tropf and Walter [tropf83] which uses

an ATN model for the recognition of 3D objects with known geometries. The

recognition process performed by their system is one of "analysis-by-synthesis" in which

hypothetical model instantiations about an object (prototypes) are generated and then

verified by the ATN. These prototypes are then verified by comparing them to the

0 actual 3D data using the ATN. If the similarity between the prototype and the image

exceed some threshold then the prototype is considered to be a model instantiation of the

4..
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actual data. Otherwise, another prototype is generated and watched against the data.

Shapiro and Haralick [Shapiro84] describe a hierarchical, relational 3D model

which is influential in our design. Their model provides precise, accurate information to

be used by low-level vision and inspection processes as well as information required by

high-level vision and reasoning processes. All of the information is represented by using

*spatial data structures', each consisting of a recursive set of relations. The hierarchy

consists of four levels: world, object, part, and surface/arc.

Rosenthal [Rosenthal8l] proposed a model and interpreter for analyzing aerial

images of urban settings. In some ways, Rosenthal's work was the impetus for this

system. He proposed a purely hierarchical model of the world which is ordered by the

ON relations and a goal driven production system to control recognition. It has a

database which contains descriptions of objects and regions. He introduced an Object

Description Notation to describe objects in the scene. This notation contains

information about both the actual and possible properties.

The work of Talmy and Herskovits [Talmy831 [Herskovits82] [Herskovits841 has

*" influenced the design of both the topological relations in the models and the choice of

linguistic attributes which must be associated with objects in order to insure a robust

and reliable natural language interface. It is from their work that the need for a single

meaning for a single relation was discovered. Herskovits methodically discusses the

knowledge we as natural language users have about the objects which we use in spatial

constructions every day.
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4. data-driven System Implementation and Results

This section will describe the implementation and performance of the major

modules Figure Fl: image acquisition, image enhancement, edge detection, stereo

matching, mapping disparity to depth, interpolation of sparse depth points, edge segment

fitting, construction of surface graph, surface attributes and topological relations
.#.

between surfaces.

We show results derived from imaging a scale model. We have also tested the

modules on real, highly complex aerial images.

4.1. Image Acquisition

Presently images are acquired manually by positioning cameras above a scale

model of some toy buildings. Figure F2 illustrates a typical stereo pair of images

acquired. A system for automatically setting camera parameters (location, pan, tilt,

focus, zoom, aperture, vergence angle) has been constructed, and a controller for

optimizing the parameters on the basis of feedback from high-level goals, medium-level

strategies, and low-level image features is under design.

This asmart camera" is an active sensor, capable of moving in or out for a better

look, zooming in on a feature, improving its signal/noise ratio,..and ocraning its necka

for a better vantage. Our philosophy is to have the sensors do as much of their own

processing as possible in a heterarchical environment, and not to devote all our resources

to exhaustive analysis of a static scene.

4.2. Image Enhancement

Before extracting the features for matching the images are smoothed with a non-

linear double window median filter [Lee85J, removing impulse noise, and suppressing

high-frequency noise. Independently, the range of grey scales is extended to cover 256
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values by linear contrast enhancement.

4.3. Edge Detection

Two edge operators have been implemented, the Canny [Canny84], (Talton84] and

DOG zero-crossing [marr80j methods. As implemented, these operators return "edgels,"

defined as points possibly lying at an intensity discontinuity, rather than "edges,"

defined as a set of edgels lying along a space curve. The two operators are now being

carefully evaluated and compared on the basis of false positives, false negatives, and

overall robustness under focus degradation and illumination degradation. Although the

verdict is not yet in, the Canny operator is presently employed, and typical results are

shown in Figure F3.

The Canny operator approximates a directional first derivative. The direction

information can be used to find areas of high curvature (e.g., corners). Our present

approach is to look at the variance of the directions in a small edgel neighborhood to

identify corners and junctions.

4.4. Stereo Matching

Because of the large interocular distance in the aerial (fly-by) imaging there are

large disparity jumps and large portions of the scene are visible in one image but not the

other. This occlusion problem has haunted many matchers.

The matcher [Smitley841 employs the method of 2-sided correlation in 'order to

circumvent some of the difficult problems of occlusion, and uses a registration technique

to bring the scan lines into correspondence [Izaguirre84]. Figure F4 illustrates the results

from the matcher. Present work in matching concerns evaluating its robustness,

extension to higher-order features (e.g.,. linear segments, corners, and junctions), and

obtaining horizontal disparities as well by taking three views per stereo frame instead of



two.

4.5. From Disparity to Depth

Generally both disparity (distance in image space between matching pL.cels) and

depth (distance in 3-space from viewer to object) are measured in a viewer-centered

coordinate system. The function from disparity to depth (absolute, not relative) is linear

in the disparity, interocular distance, focal length, and vergence angle. In the case where

the view vector is parallel to the ground, a large disparity implies that the object is close,

i.e., has a small depth value. In the case where the view vector is perpendicular to the

ground (i.e., in the aerial domain) a large disparity implies that the object is close, i.e.. is

far from the ground. We adopt the convention of mapping large disparities into large

depths.

The method is essentially triangulation. We are building hardware to both control

and measure the vergence angle between two cameras. With this angle, the exact

distance to any point fixated in both visual fields can be discovered. Given this exact

distance, the relative depth map returned from stereo can now be fixed as an absolute

depth map.

4.6. Depth Point Interpolatlon-Filling In The Gaps

Presently two types of interpolation are implemented. The first attempts to

restore edgels which should have been matched, but were not matched, by comparing

the depth map with a map of edgels with a largely vertical (hence matchable) component

in its directional derivative. The depth map is updated by adding selected edgels with a

linearly interpolated depth value. This is an important process, and the results of linear

intepolation are not entirely satisfactory. Improved interpolation will use corners and

junctions in the near future.

.,
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The second interpolation rills depth values in featureless areas. This is quite

simple-minded [grimson8l] and does not provide exceptional results. But because this is

used primarily for display purposes, i.e., we do not want to hypothesize about featureless

areas, this is not a significant problem.

4.7. Edge Segment Fitting-Generating Wire Frames

This process fits a set of (straight) line segments in 2-point form (wire frames) from

a rich set of depth points by a divide-and-conquer method of recursive decomposition.

This method assumes that the boundary is of low curature, and needs information

about the location of corners to operate correctly. Figure F5 illustrates the edg?

segments generated from an interpolated depth map, and corners specified interactively.

4.8. Surface Model

A graph is constructed to serve as the surface model. This process converts a set

of contours into a set of closed contours represented as a graph (a linked list of vertices,

edges, and faces). The construction algorithm looks for minimum distance paths from a

vertex back to itself, by traversing edges and at trihedral junctions choosing the path

making the most acute angle with respect to the present path. Figure FO illustrates the

faces represented in the surface model.

Surface attributes and relations are computed in the SurfsUP

[Radack84 geometrical modeling system. In it, a face is defined by its enclosing 3D

contours. Attribute values for each face in the surface graph are computed [Krotkov84]:

compactness, centroid vector, (outward-pointing) normal vector, area, etype," (building,

sidewalk, field, street, and unknown), and number of sides. These values are computed

once and stored on an attribute list.

Computed topological relations are above, adjacent (touching), contiguous (sharing

A
S .. . P , . . . . • ....
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an edge), contains (proper inclusion), looksadjacent, looksconi.guous (respectively

adjacent and contiguous under perspective transformations) [Krotkov84]. Relations (and

indirectly their complements) are computed once and stored as Boolean arrays. These

relations are expensive to compute because they require intersection operations (except

the above relation).

5. query-driven System Implementation and Results

This section describes the design and implementation of the query-driven processes.

These include object recognition, scene modelling, high level reasoning processes, and

query handling.

S.L, Object Recognition

The Argmented Transition Network (ATN) formalism has been chosen as the

paradigm for object recognition in LandScan. It is composed of three parts: the

grammar, a dictionary, and an interpreter. The grammar represents the a priori or

world knowledge that the system must have in order to recognize objects and assign

"cultural" labels to subsets of the scene. The dictionary is simply a list of all of the

faces which have been segmented by the low and middle level routines. It represents the

actual data which will be used in the recognition process. The third component of the

recognizer is the Lisp program which provides the control structure for the process. An

object is recognized by traversing a network successfully. Figure F7 shows the results of

running the recognizer on the image in Figure F6.

The ATN formalism was chosen to perform object recognition for several reasons.

First, the grammar enables the global knowledge about object appearances to be encoded

as a generative model (grammar) for objects of indefinite appearances. Another reason is

that the ATN operates using a top-down control structure - enabling the object

recognition to be a query-driven process. Finally, the fact that the global knowledge

~~%



(grammar) and the control structure are separate makes adding more global knowledge

or changing the control strategy trivial.

The grammar as written is a two level network (this is considerably simpler than

most ATN's which handle natural language utterances.) The bottom level concerns itself

with the recognition of "simple objects.' An object is simple if its further decomposition

into parts will result in no entity which is in the domain of objects. For example,

decomposing a building with a pitched roof will result in two halves of a pitched roof.

Neither of these entities are considered objects in the domain - they are parts of objects.

This level consists of the networks S[MPBUILD, SIMPSTREET, SIMPFIELD, and

SIMPSIDEWALK. The top level combines the simple objects which were recognized in the

frst level of the network into ocomplex objectse. A complex object is decomposable in a

nontrivial way into at least one simple object.

A network is a set of nodes and arcs. The nodes represent how far the system has

progressed in the object recognition. The arcs represent the patterns (object primitives

of simple objects) which must be matched in order to proceed further in the recognition

of that particular object. Each network is represented by a set of grammar rules.

The states are named with the convention of two part names [bates8l]. The first

part of the name indicates the name of the network and the second part describes either

how far along this state is in the recognition process or the subtype of the object being

recognized.

The arcs are represented by lists of the form (TYPE HEAD TEST ACTION). TYPE

indicates the category or type of are. The are types in LandScan are:

* PUSH - call to a "simple" network

e CAT - search the dictionary (surface model) for an appropreate face

-IC V.
'. . * ' .



* POP - return to a calling network or add an object to the scene model and

return that an object has been found

* JUMP - go to the next state without searching for a primitive object or face

HEAD is dependent upon the type of arc it is. HEAD can be a syntactic category - words

or lists of words, a constituent type, the next state, or the form in which the data

4parsed* is to be returned. TEST is a list (possibly empty) of tests to be performed

before the arc can be traversed. The tests on the arcs encode the relations which must

hold betweeen the components of an object and also provide further checking of the

features of a component. ACTION is a list of actions to be performed as the arc is

traversed. The possible egister setting and structure building actions are:

* (SETR REG VALUE) - sets the register REG to the evaluation of VALUE

* (SETRQ REG STRING) - sets the register REG to the literal STRING

* (ADDR REG VALUE) - appends the evaluation of VALUE to the end of the list in
REG

* (BUILDQ <OBJECT>) - builds an object instance

There are two registers associated with the system - a SUBTYPE register and an

OBJECT register. The SLBTYPE register contains the current subtype of the object being

recognized. It is a feature register whose value is a string indicating the subtype name of

an object. The OBJECT register is a role register containing a list of all the faces which

comprise the object. As faces are found which match the generative sequence described

5i by the grammar, they are added to the OBJECT register.

The dictionary in the recognizer is the Surface Model (described above) which

represents both the geometric and topological information about the surface primitives in

the scene [krotkov84].

U,* ,'€ , ,,' .' - -, % N ,-'% ' '-,.; " , , ', 
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5.2. The Scene Model

In order to perform any scene analysis in a reasonable way the scene has to be

represented in some fashion which will enable the operations necessary for scene analysis

to be performed. These actions include determining the relations, both complex and

simple, among objects; and locating and identifying specific objects and object parts. A

dynamic scene model has been designed which is composed of two components: a list of

objects currently known to be in the scene and a set of matrices representing the

primitive relations which have been found necessary and sufficient for performing further

scene analysis. The scene model is dynamic because information can be added to it as

further image analysis occurs.

The first com-'onent of the scene model is the object list. The objects on this list

are those objects which have been recognized during previous scene analysis operations.

These objects are represented only by polyhedral surfaces. Each instance of an object in

the scene has the information associated with it which was determined necessary to

facilitate further scene analysis. The components of an object record are a name, the list

of faces (polyhedral surfaces) comprising the object, its location in Euclidean three space

(average of the centroids of all the faces comprising the object), and a subtype which

gives more specific information about the expectations one can have about the object.

The relations in the scene model represent the primitive relations or topological

properties between objects in the scene. The six relations adequate to represent all

relations, both simple and complex, among objects using various forms of relational

composition are ADJACENT, CONTIGUOUS, LOOKSADJACENT,

LOOKSCONTIGUOUS, ABOVE, and CONTAINS. They are defined over the set of all

objects currently recognized in the scene. These relations are defined similarly to their

counterparts in the Surface Model. The relations are represented by their adjacency
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matrices because the adjacency matrix is easily updated and ma!:es composition of

relations simple. The composition becomes a simple matter of boolean matrix

multiplication for which there are many fast and efficient algorithms.

Keeping a list of objects known to be in the scene allows the addition of further

information to the scene model to be a trivial task. The object list component of the

scene model is the set over which the primitive spatial (topological) relations is defined.

Therefore adding the new tuples to the relations will only involve calculating the

relations between the new entities and the new set over which the relations are defined.

Thus the choice of dynamic model is feasible and will allow for a top-down scene

analysis.

6.3. Linguistic Analyzer

Given a query, the Linguistic Analyzer will symbolically represent this utterance so

that it can be used by the reasoning process to analyze the image. The Linguistic

Analyzer will parse the query, determine the query type, and categorize all implicit

subqueries in the actual utterance. The output from the analyzer will contain a list of

the objects to be found, the relations which must hold between these objects, and the

query type (so that an appropriate response can be generated). As an example of this

query analysis, suppose the user were to ask the question, 6L9 thire a car on the street?"

The output from this query would be the objects to be recognized, car and street; the

relation ON defimed be multiplying the CONTAINS relation by the transpose of the

ABOVE adjacency matrix; and an indication that this query is responded to by a yes/no

answer with some explanation. In this phase, the analyzer may discover that the query
I.

fails to have an answer because the query is syntactically incorrect (the grammar is

wrong or the vocabulary is unknown). In order for the analyzer to be robust, it must

1%-. then indicate to the user that LandScan is unable to answer the question because the

query is ill-formed.
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In order to produce output in some form useful to the reasoning processes it will be

necessary for this module to have certain knowledge available. This includes the

grammar of the language (English queries), the vocabulary necessary for this domain,

and the semantics of locative constructs in order to produce a symbolic representation of

the question.

5.4. Reasoning

The final component of LandScan is the reasoner which performs all high-level

scene understanding operations. The reasoning operations are divided into three major

categories (which are not nearly as simple as they appear):

1. rind an object in the scene model

2. rind an object part

3. find the spatial relations among objects

It is in the reasoner that all the parts of the system are tied together. In order to

obtain the information necessary for the generation of the response the reaoner must

have available to it both global knowledge and runtime data. The global knowledge

includes the World Model and the Object Model (described below). The runtime data

includes the sensory information available from the vision system in the form of the

Scene Model (described above) and a symbolic representation of the query.

If the reasoning processes fail to produce a positive response (the query fails to

have an answer), the reasoner performs two types of query failure analysis. The first

type of query failure involves a query violating the global knowledge embodied in the

World or Object Model. In this case, the system will respond with a message indicating

that the query is conceptually ill-formed in this domain and why it is ill-formed. For

instance, if the query asked how many walls the street had, the system would respond

that streets do not have walls and that for that reason, the query is ill-formed. The

C %
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other type of failure involves not finding the information requested in the scene model.

In this case, rather than simply responding that the system was unable to find the data

in question, it would prompt the vision system to move the cameras and combine this

new view of the scene with the old one in order to obtain a positive response to the

query.

5.4.1. World Model

Like the hierarchical relational model of Shapiro and Haralick, the world model

describes the features and relations of the objects in the domain. The objects are those

which can be expected in an urban scene - buildings, streets, sidev'alks, etc. The wor!d

is represented by a labelled directed multigraph in which the ncdes are the objects in the

domain and the arcs are labelled with the relation which can hold between the two

objects in the world. It has been determined that at least two relations are needed to

adequately model the world. The two relationships are NEXTJTO and ON. NEXTTO

implies that two objects can be expected to be adjacent in the domain. This adjacency

does not necessarily mean that the two objects will be adjacent in the geometric sense -

sharing a common boundary - but that they would be viewed as being "close enough" to

be considered adjacent. For example, CAR NEXT To BUILDING could be said to hold

'd even if the car and building are separated by some other small object such as a

sidewalk. The ON relation has one interpretation "on top ofO.

5.4.2. Object Model

The object model represents the expected physical features and linguistic properties

of the objects in the domain. The physical properties are the parts of objects. These

'parts" are the objects which were not included in the world model in order to keep the

level of abstraction in that model consistent. In the object model, objects are

decomposed into their possible parts.

The linguistic properties are those features which affect the usage and

IIK
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interpretation of a spatial construct (phrases describing the spatial relations between

objects). Since the domain is a visual one, each object in the domain will have a Oplaceo

associated with it. This is what Herskovits calls the canonical geometric description of a

spatial entity (objects) [Herskovits821.Ordinary solid objects (buildings, vehicles, people)

are bounded closed surfaces. Geographical objects are entities with slightly imprecise

boundaries - roads, rivers, and fields. Some other properties which must be represented

are a prototype shape and the allowable deviations from it, the relative size, and

characteristic orientation - ie. a table stands on its legs normally. The typical geometric

conceptualization will also affect the choice cf spatial construct - is the object normally

viewed as a point or line. Along with the typical geometric conceptualization is the

typical physical context of an object. For instance, a door is normally viewed as being in

a wall. The normal function of an object, its functionally salient parts and the actions

commonly performed with an object will also be necessary for analyzing the spatial

constructs.

8. Future Work

In the data-driven system, much work still needs to be done in interpolating the

depth map, edge fitting, and finding closed contours. In particular, it proves to be

difficult to extract closed contours from the interpolated depth map (Section 4.8). Our

future work will look hard at the feedback available from the failure to close contours

and how it may be applied to the camera controller to take images to help close the

contours. Other work concerns the implementation of algorithms for camera parameter

control, corner detection, and measurement of focus sharpness.

In the query-driven system, the recognizer and scene model will provide the image

information necessary to perform scene analysis of urban environments. The reasoning

operations and linguistic analyzer must be fully specified and implemented. In
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particular, we will be paying special attention to the encoding of spatial prepositions and

providing a computational model for handling query failure.

Before the scene model can be used in the query-driven image analysis process, the

global knowledge embodied in the world and cbject models must be encoded. The world

model will be represented graphically as explained above. The object model presents

more of a challange though. The P:ARTOF relation has been handled in many systems

[rosenthal8l], [shapiro841. However, no one has yet proposed a means of encoding the

linguistic data which must be known about the objects in order to use them correctly in

natural language utterances. Herskovits [herskovits82] suggests that certain object

knowledge is relevant to the task of encoding and decoding locative constructions.

The natural language interface which uses the scene representation still has to be

designed. It must be able to apply locative linguistic constructs to some representation

of visual data and reason about this data. When this is operative, the scene analysis will

be truly query-driven and the goals of the system will have been reached.

7. Conclusions

This paper has presented LandScan, a prototype vision system under development.

This system covers most of the different levels of vision and natural language processing.

In summary, the data-driven subsystem of LandScan automatically acquires stereo

images, enhances them by both linear and non-linear filtering, extracts edgels, matches

edgels to generate a depth map, interpolates the depth map, fits edgels to depth points,

uses the edges to build a surface grph, including geometric and topological attributes.

The query-driven modules recognize objects and build a scene model which represents

the user's interest in the image. It is controlled by the reasoner and linguistic analyzer

which provide a computational model for handling spatial constructs and query failure.

J
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While LandScan is not complete in the sense that all of it is successfully

implemented, it provides a computational model for a vision system guided by natural

language.
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Figur'e 0-7: Objects recognized in FIGZT_ M.
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Abstract

This paper presents LandScan (LANguage Driven SCene ANalysis) as an integrated
vision system which covers many levels of both vision and natural language processing.
Computations are both data-driven and query-driven, but only the data-driven system is
considered here.

The data-driven system employs active control of stereo cameras for image acquisition,
and a bottom-up flow of control dynamically constructs a surface model from multiple
aerial views of an urban scene. Processing steps include: image acquisition, image
enhancement, edge detection, stereo matching, mapping disparity to depth, interpolation
of sparse depth points, edge segment fitting, construction of surface model, including
surface attributes and topological relations between surfaces.

LandScan:
A Computer Vision System for Analyzing Aerial Images

1. Introduction

The aim of our research is to develop a system capable of dynamicaly updating

and maintaining a model of an urban world over multiple aerial views. The system will

have a natural language front end [Zwarico 841, through which users can query the

system about what it sees, and to direct or interactively assist the vision processing by

restricting the analysis to those areas of the scene which are of current interest. The

representation is dynamic, constructed as the system is queried, and explicitly represents

the history of the user's interest in the scene.

A unique contribution of the work is that processing is both data-drivenn (abottom

up,* determined by sensor data) and query-driven (*top down,, determined by user

queries). The integration of both methods into one systcm can help overcome the

shortcomings of each method employed independently. For example, if data-driven

processing were able to segment a graph of edges derived from the image into several

different connected components, query-driven information about what the system should

be looking for can help impose structure, and a unique segmentation, upon the otherwise

ambiguous data.
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The data-driven processing starts with stereo aerial images and proceeds, by

filtering, matching, interpolating, and fitting, to reconstruct the surfaces in the scene.

The aerial domain buys the simplicity of planar surfaces. Two factors distinguish this

data-driven system from many others. First, image acquisition is controlled by feedback

from the query-driven system, and is undertaken by active sensors, actively probing the

environment. Second, the controlled environment of a scale urban model allows precise

verification of results and proper operation of individual modules.

This paper will describe the aerial domain, some related research, the

implementation of the data-driven portion of the LandScan (LANguage Driven SCene

ANalysis) system, and our plans for future work.

2. The Aerial Domain

Aerial images suffer from a poverty of context, due to the distance at which images

are formed. Urban scenes contain featureless areas and large numbers of occlusion edges.

Even with the best possible use of image data, we generally can do no better than to

compute a sparse depth map of the imaged scene. For many purposes a sparse depth

map is inadequate, and the missing surface information must be obtained from other

sources: other "shape from ... processes, domain-dependent high-level knowledge, and

real-world constraints.

There are two major constraints in the aerial domain:

1. The data is obtained by taking aerial photographs of an urban environment.
Urban scenes are characterized by an abundance of straight lines. This
means that to a very good approximation the scene, as viewed from on high,
is composed of planar polyhedra, so that detected edges separate planar
surfaces, i.e., each edge arises because it is the intersection of 2 planar faces.

2. The image acquisition process is under our control, so the camera model is
known. Some combination of azimuth and elevation angles, Euler angles,
pan, roll, tilt angles are available and fully specify a 4x4 homogeneous
transformation relating the position and orientation of the two cameras.
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Domain knowledge includes such facts as roofs of buildings tend to be parallel to

the ground plane, while walls are perpendicular to it, and that sidewalks are thinner

(more compact) than roads.

3. Related Research

A large corpus of research on aerial image understanding per se exists, [Akey 841,

[Harlow 84], [Hwang 83], [Nagao 791, [Sloan 81], [Quam 78], [Faugeras 81], and many

general vision techniques are applicable to the aerial domain. Large aerial projects have

been undertaken at USC [Nevatia 831 and at SRI [Fischler 831.

The 3D MOSAIC project [Herman 83] is geared toward the urban aerial domain.

Important differences in their strategy are that junctions are primitive, and a monocular

analysis is performed. At the level of object representation LandScan treats surfaces as

primitive, while 3D Mosaic treats faces, edges and points as primitives. Further, in 3D

MOSAIC hypotheses are generated about the continuation of occluded lines, shapes of

faces, and the extent of vertical faces. The construction of the scene model in the 3D

MOSIAC system is exclusively data-driven, while LandScan uses a query-driven approach

for constructing the Scene Model.

Shapiro and Haralick [Shapiro 84] describe a hierarchical, relational 3D model

which is influential in our design. Their model provides precise, accurate information to

be used by low-level vision and inspection processes as well as information required by

high-level vision and reasoning processes. All of the information is represented by using

"spatial data structures', each consisting of a recursive set of relations. The hierarchy

consists of four levels: world, object, part, and surface/arc.

% . . . .. . .. . • ... "--
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4. System Implementation and Results

This section will describe the implementation and performance of the major data-

driven modules, illustrated in Figure 8-1: image acquisition, image enhancement, edge

detection, stereo matching, mapping disparity to depth, interpolation of sparse depth

points, edge segment fitting, construction of surface model, including surface attributes

and topological relations between surfaces.

4.1. Image Acquisition

Presently images are acquired manually by positioning cameras above a scale

model of some toy buildings. Figure 8-2 illustrates a typical stereo pair of images

acquired. A system for automatically setting camera parameters (location, pan, tilt,

focus, zoom, aperture, vergence angle) has been constructed, and a controller for

optimizing the parameters on the basis of feedback from high-level goals, medium-level

strategies, and low-level image features is under design. This *smart camera' is an

active sensor, capable of moving in or out for a better look, zooming in on a feature,

improving its signal/noise ratio, and much more. Our philosophy is to have the sensors

do as much of their own processing as possible in a heterarchical environment.

4.2. Image Enhancement

Before extracting the features for matching the images are smoothed with a non-

linear double window median rilter [Lee 851, removing impulse noise, and suppressing

high-frequency noise. Independently, the range of grey scales is extended to cover 256

values by linear contrast enhancement (see Figures 8-3 and 8-4).
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4.3. Edge Detection

Two edge operators have been implemented, the Canny [Canny 841, [Talton

841 and DOG zero-crossing [Marr 801 methods. As implemented, these operators return

vedgels,6 defined as points possibly lying at an intensity discontinuity, rather than

oedges, defined as a set of edgels lying along a space curve. The two operators are now

being carefully evaluated and compared on the basis of false positives, false negatives,

and overall robustness under focus degradation and illumination degradation. Although

the verdict is not yet in, the Canny operator is presently employed, and typical results

are shown in Figure 8-5.

The Canny operator approximates a directional first derivative. The direction

. information can be used to rind areas of high curvature (e.g., corners). Our present

approach is to look at the variance of the directions in a small edgel neighborhood to

identify corners and junctions.

4.4. Stereo Matching

Because of the large interocular distance in the aerial (fly-by) imaging there are

large disparity jumps and large portions of the scene are visible in one image but not the

other. This occlusion problem has haunted many matchers.

The matcher [Smitley 84j employs the method of 2-sided correlation in order to

circumvent some of the difficult problems of occlusion, and uses a registration technique

to bring the scan lines into correspondence RIzaguirre 841. Figure 8-8 illustrates the

results from the matcher. Present work in matching concerns evaluating its robustness,

extension to higher-order features (e.g., linear segments, corners, and junctions), and

obtaining horizontal disparities as well by taking three views per stereo frame instead of

two.

. . . . . . . ..



~5

4.5. From Disparity to Depth

Generally both disparity (distance in image space between matching pixels) and

depth (distance in 3-space from viewer to object) are measured in a viewevr-centered

coordinate system. The function from disparity to depth (absolute, not relative) is linear

in the disparity, interocular distance, focal length, and vergence angle. In the case where

the view vector is parallel to the ground, a large disparity implies that the object is clo:se,

i.e., has a small depth value. In the case where the view vector is perpendicular to the

ground (i.e., in the aerial domain) a large disparity implies that the object is close, i.e., is

far from the ground. We adopt the convention of mapping large disparities into large

depths.

The method is essentially triangulation. We are building hardware to both control

and measure the vergence angle between two cameras. With this ang.e, the exact

distance to any point fixated in both visual fields can be discovered. Given this exact

distance, the relative depth map returned from stereo can now be fixed as an absolute

depth map.

4.8. Depth Point Interpolatlon-F111ng In The Gaps

The research issue for any scheme of filling the gaps is the trade-off between the

measurements and the a priori information. We elaborate this trade-off with an

example. Let us suppose that we have a sparse array of 3D points after a stereo and/or

optical flow computation. Remember we are left with some points that have not been

matched either in the stereo matching nor in optical flow computation. In order to fill in

the gaps we have several possibilities:

a) we can ignore the unmatched points, i.e., have confidence only in those points

(measurements) that have been matched. Then assume, let us say a linear (or any

polynomial) model (the a priori information about the local surface). Based on this we



perform linear (or polynomial) interpolation between the neighboring points.

b) an alternative to the case (a) is instead of assuming the linear or polynomial

model, which are inherently local, neighborhood models, assume a global smoothness

constraint, which using variational calculus tries to fit the smallest and smoothest surface

over the sparse data [Grimson 811.

c) the third possibility is to assume a local smoothness constraint in the depth

values. Then reexamine the unmatched points (match them with the closest edgels in the

other image) and check whether their depth value would satisfy the smoothness

constraint with the neighboring points.

d) Finally if, for example, from the outline we can identify measured object then

clearly the gfill in gapse process can use this information. Example of this case can be

sidewalks or roads in aerial views.

As usual in machine perception, there is no one technique that works uniformly

well in all cases. We believe that this is an integral part of the surface interpretation.

One clearly needs all the above techniques available and then having a rule-based system

use whichever give the sbesto results. For example if we have one obejct in the view,

then perhaps the third method is the "bests. If one has reason to assume that one deals

with objects that have only planar surfaces, then the first method might be adequate.

The third method is the most versatile since it uses the most measurements and the least

a priori information. The cost is in computation.

Presently two types of interpolation are implemented. The first attempts to

restore edgels which should have been matched, but were not matched, by comparing

the depth map with a map of edgeLs with a largely vertical (hence matchable) component

* in its directional derivative. The depth map is updated by adding selected edgels with a

• .. -. . -. . . - . . ,. . . . . - .' . . . . . , . > . , . ., , .. - . .' - - - " " : .r_:' - -, . ' " - :
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linearly interpolated depth value (Figure 8-7). This is an important process, and the

results of linear intepolation are not entirely satisfactory. Improved interpolation will

use corners and junctions in the near future.

The second interpolation fills depth values in featureless areas. This is quite

simple-minded [Grimson 811 and does not provide exceptional results (see Figure 8-8).

But because this is used primarily for display purposes, i.e., we do not need to

hypothesize about featureless areas because of the aerial perspective on an urban world,

this is not a significant problem.

4.7. Edge Segment Fitting-Generating Wire Frames

This process fits a set of (straight) line segments in 2-point form (wire frames) from

a rich set of depth points by a divide-and-conquer method of recursive decomposition.

This method assumes that the boundary is of low curvature, and needs information

"* about the location of corners to operate correctly. Figure 8- illustrates the edge

segments generated from an interpolated depth map, and corners specified interactively.

4.8. Surface Model

A graph is constructed to serve as the surface model. This process converts a set

of contours into a set of closed contours represented as a graph (a linked list of vertices,

edges, and faces, as in Figure 8-10). The construction algorithm looks for minimum

distance paths from a vertex back to itself, by traversing edges and at trihedral junctions

choosing the path making the most acute angle with respect to the present path. Figures

8-11 and 8-12 illustrate the faces represented in the surface model.

Surface attributes and relations are computed in the SursUP [Radack, et al

841 geometrical modeling system. In it, a face is derined by its enclosing 3D contours.

Attribute values for each face in the surface graph are computed [Krotkov 841:
p1

- -•i
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compactness, centroid vector, (outward-pointing) normal vector, area, "type, (building,

sidewalk, field, street, and unknown), and number of sides. These values are computed

once and stored on an attribute list.

Computed topological relations are above, adjacent (touching), contiguous (sharing

an edge), contains (proper inclusion), looksadjacent, iookscontiguous (respectively

adjacent and contiguous under perspective transformations) [Krotkov 841. Relations

(and indirectly their complements) are computed once and stored as Boolean arrays.

These relations are expensive to compute because they require intersection operations

(except the above relation).

5. Future Work

In the data-driven system, much work still needs to be done in interpolating the

depth map, edge fitting, and finding closed contours. In particular, it proves to be

difficult to extract closed contours from the interpolated depth map (Section 4.8). Our

future work will look hard at the feedback available from the failure to close contours

and how it may be applied to the camera controller to take images to help close the

contours. Other work concerns the implementation of algorithms for camera parameter

control, corner detection, measurement of focus sharpness, and using feedback from

failure to recognize an object to guide future processing.

6. Conclusions

This paper has presented LandScan, an integrated vision system under

* development. This system covers most of the different levels of vision and natural

language processing, integrating sensor information with surface, scene and world

models.

In summary, the data-driven subsystem of LandScan automatically acquires stereo



' m'

images, enhances them by both linear and non-linear filtering, extracts edgels, matches

edgels to generate a depth map, interpolates the depth map, fits edgels to depth points, .

uses the edges to build a surface graph, including geometric and topological attributes.

While LandScan is not complete in the sense that all of it is successfully 4
implemented, the system covers a wide spectrum of vision and natural language Ze

processing.

7. Acknowledgement&

This research was supported by the following grants: '

ARO DAA6-29-84-k-0061
AMOSR 82-NM-29g
NSF MCS-8219196-CER ,

NSF MCS 82-07-994
AVRO DAABO7-84-K-F077
NIH I-ROI-HL-29985-O1

Also many thanks to Jon Korein for helping with SurfsUP. ".'

S. Figures

VVI

.4-

4-



* 10

Figure 8-1: Block diagram of data-driven section of LandScan system.

Active Stereo Image Acquisition

Image Enhancement

Edge Detection

Stereo Matching

Map Disparity to Depth

Interpolate Sparse Depth Map

Fit Edge Segments to Depth Values

Construct Surface Graph

Compute Surface Attributes

Compute Topological Relations Between Surfaces

K

V

S



Figure 8-2: Stereo pair of aerial images, left .'.d right, of scale 'irban rnidel.
Objects present include 3 buildings, 2 sidewalcs, 1 tree, I field, and 2

roads.
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Figure 8-3: Histograms of left image intensitk,:, bcfor : and after enhancement.
The enhancement has caused some a!6. in,-, Inat b--s improved the contrmst

by a factor of(1.5. Right, iniag', a~'~~ re very similar.
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Figure 8-4: Enhanced images, 1c.It and right.
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FIgure S-5: Results of Cann edde detector, left and rigiht cdgel" maps.
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Figure 8-6: Edgels matched using, 2-sided correlation.
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Figure 8-7: Depth miap with depth values linearly interpolated. This biuarv
j ~picture depicts only the location of ro-z,:ro depths. Picture generated.

directly from disparities and original1 images.
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* Figure 8-8: Depth map with depth values linearly interpolated inside of
featureless areas. Picture menerated dilrectly from disparities

and edgels. The long trou hs arc roads and sicdc~valks. The spike,- i-,e
build in -s.

.. . ..



Figure 8-2: Edge segrnents generated from an Interpolated dcpth map. This iictur-
not genert-ted automatically-, corners Speciid interactivoiv.
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Figure 2-10: Surface graph da~ta structure.
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Figure 8-11: Reconstructed planar surfaces, rendered by M1ovie.BYU in top
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